Synchrotron x-ray experiments in the world's strongest magnetic field

Mar 17, 2006
Synchrotron x-ray experiments in the world's strongest magnetic field
Figure 1. A miniature pulsed magnet attached to the sample-rod of a helium cryostat. The magnet is cooled down to helium temperature together with a sample. This magnet is a solenoid type coil wound by AgCu wire; the outer part is reinforced by grass fibers. A Japanese 10 yen coin is on the right hand side of the magnet as a scale. (Courtesy: SPring-8)

A combination of high magnetic fields and "quantum beam" such as synchrotron x-rays or neutrons is one of most powerful experimental means to examine the magnetic and the electronic properties of strongly correlated electron systems and of functional materials for spintronics applications.

Recently, a team of Japanese researchers have succeeded in performing the high magnetic field synchrotron x-ray experiments up to 51 Tesla at the BL22XU beamline of SPring-8 (Fig 2).

Synchrotron x-ray experiments in the world's strongest magnetic field
Figure 2. A wave form of pulsed magnetic field generated by the mini-magnet. The high field up to 51 T is generated and the energy used is around 1.4 kJ. (Courtesy: SPring-8)

It is the world's strongest magnetic field used for the quantum beam experiment. As the first series of experiments, the field-induced valance transitions in rare-earth inter-metallic compounds have been studied by means of x-ray absorption spectra and x-ray diffraction.

The key of this achievement is the use of the miniature pulsed-magnet (Fig 1). The volume and the energy of the present magnet are as small as 1 % of those of conventional pulsed magnet.

Moreover, the miniature pulsed-magnet is readily installed into the standard cryogenic system of a conventional diffractometer. This feature enables us to perform such high field experiments rather easily. The present achievements will open a variety of new applications in x-ray scattering and x-ray spectroscopy in extremely strong magnetic fields.

This work was done as the collaboration work among Okayama University, Japan Atomic Energy Agency and Tohoku University, and was supported by Grant-in-Aid for Scientific Research on priority Areas “High Field Spin Science in 100 T” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The part of the results of this work was published in Journal of the Physical Society of Japan.

Citation:"High Field X-ray Diffraction Study on a Magnetic-Field-Induced Valence Transition in YbInCu4", Y. H. Matsuda, et. at., Journal of the Physical Society of Japan, Vol. 75 No. 2, February, 2006

Source: SPring-8

Explore further: Scientists describe a hybrid laminate material with magnetic and photoactive properties

add to favorites email to friend print save as pdf

Related Stories

New type of solar concentrator desn't block the view

5 hours ago

(Phys.org) —A team of researchers at Michigan State University has developed a new type of solar concentrator that when placed over a window creates solar energy while allowing people to actually see through ...

Cities, states face off on municipal broadband

5 hours ago

Wilson, N.C., determined nearly a decade ago that high-speed Internet access would be essential to the community's social and economic health in the 21st century, just as electricity, water and sewers were in the previous ...

Recommended for you

On the hunt for dark matter

1 hour ago

New University of Adelaide Future Fellow Dr Martin White is starting a research project that has the potential to redirect the experiments of thousands of physicists around the world who are trying to identify the nature ...

Water window imaging opportunity

20 hours ago

Ever heard of the water window? It consists of radiations in the 3.3 to 4.4 nanometre range, which are not absorbed by the water in biological tissues. New theoretical findings show that it is possible to ...

User comments : 0