Synchrotron x-ray experiments in the world's strongest magnetic field

Mar 17, 2006
Synchrotron x-ray experiments in the world's strongest magnetic field
Figure 1. A miniature pulsed magnet attached to the sample-rod of a helium cryostat. The magnet is cooled down to helium temperature together with a sample. This magnet is a solenoid type coil wound by AgCu wire; the outer part is reinforced by grass fibers. A Japanese 10 yen coin is on the right hand side of the magnet as a scale. (Courtesy: SPring-8)

A combination of high magnetic fields and "quantum beam" such as synchrotron x-rays or neutrons is one of most powerful experimental means to examine the magnetic and the electronic properties of strongly correlated electron systems and of functional materials for spintronics applications.

Recently, a team of Japanese researchers have succeeded in performing the high magnetic field synchrotron x-ray experiments up to 51 Tesla at the BL22XU beamline of SPring-8 (Fig 2).

Synchrotron x-ray experiments in the world's strongest magnetic field
Figure 2. A wave form of pulsed magnetic field generated by the mini-magnet. The high field up to 51 T is generated and the energy used is around 1.4 kJ. (Courtesy: SPring-8)

It is the world's strongest magnetic field used for the quantum beam experiment. As the first series of experiments, the field-induced valance transitions in rare-earth inter-metallic compounds have been studied by means of x-ray absorption spectra and x-ray diffraction.

The key of this achievement is the use of the miniature pulsed-magnet (Fig 1). The volume and the energy of the present magnet are as small as 1 % of those of conventional pulsed magnet.

Moreover, the miniature pulsed-magnet is readily installed into the standard cryogenic system of a conventional diffractometer. This feature enables us to perform such high field experiments rather easily. The present achievements will open a variety of new applications in x-ray scattering and x-ray spectroscopy in extremely strong magnetic fields.

This work was done as the collaboration work among Okayama University, Japan Atomic Energy Agency and Tohoku University, and was supported by Grant-in-Aid for Scientific Research on priority Areas “High Field Spin Science in 100 T” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The part of the results of this work was published in Journal of the Physical Society of Japan.

Citation:"High Field X-ray Diffraction Study on a Magnetic-Field-Induced Valence Transition in YbInCu4", Y. H. Matsuda, et. at., Journal of the Physical Society of Japan, Vol. 75 No. 2, February, 2006

Source: SPring-8

Explore further: New terahertz device could strengthen security

add to favorites email to friend print save as pdf

Related Stories

Senators get no clear answers on air bag safety

8 hours ago

There were apologies and long-winded explanations, but after nearly four hours of testimony about exploding Takata air bags, senators never got a clear answer to the question most people have: whether or ...

Nicaragua: Studies say canal impact to be minimal

8 hours ago

Officials said Thursday that studies have determined a $40 billion inter-oceanic canal across Nicaragua will have minimal impact on the environment and society, and construction is to begin next month.

Former Brown dean whose group won Nobel Prize dies

8 hours ago

David Greer, a doctor who co-founded a group that won the 1985 Nobel Peace Prize for working to prevent nuclear war and who helped transform the medical school at Brown University, has died. He was 89.

Recommended for you

New terahertz device could strengthen security

Nov 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

Nov 21, 2014

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.