More evidence for new species hidden in plain sight

Dec 21, 2007

Two articles published today in the online open access journals BMC Evolutionary Biology and BMC Biology provide further evidence that we have hugely underestimated the number of species with which we share our planet. Today sophisticated genetic techniques mean that superficially identical animals previously classed as members of a single species, including the frogs and giraffes in these studies, could in fact come from several distinct ‘cryptic’ species.

In the Upper Amazon, Kathryn Elmer and Stephen Lougheed working at Queen’s University, Kingston, Canada teamed up with José Dávila from Instituto de Investigación en Recursos Cinegéticos, Cuidad Real, Spain to investigate the terrestrial leaflitter frog (Eleutherodactylus ockendeni) at 13 locations across Ecuador.

Looking at the frogs’ mitochondrial and nuclear DNA, the researchers found three distinct species, which look very much alike. These species have distinct geographic distributions, but these don't correspond to modern landscape barriers. Coupled with phylogenetic analyses, this suggests they diverged before the Ecuadorean Andes arose, in the Miocene period over 5.3 million years ago.

"Our research coupled with other studies suggests that species richness in the upper Amazon is drastically underestimated by current inventories based on morphospecies," say the authors.

And in Africa, an interdisciplinary team from the University of California, Los Angeles, Omaha’s Henry Doorly Zoo, and the Mpala Research Centre in Kenya has found that there may be more to the giraffe than meets the eye, too.

Their analysis of nuclear and mitochondrial DNA shows at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Further divisions within these groups mean that in total the researchers have spotted 11 genetically distinct populations.

“Such extreme genetic subdivision within a large vertebrate with high dispersal
capabilities is unprecedented and exceeds that of any other large African mammal,” says graduate student David Brown, first author of the study. The researchers estimate that the giraffe populations they surveyed have been genetically distinct for between 0.13 and 1.62 million years. The findings have serious implications for giraffe conservation because some among these subgroups have as few as 100 members, making them highly endangered – if not yet officially recognised – species.

Source: BioMed Central

Explore further: Japan lawmakers demand continued whaling

add to favorites email to friend print save as pdf

Related Stories

Bumpy beast was a desert dweller

Jun 24, 2013

During the Permian era, the Earth was dominated by a single supercontinent called Pangea – "All-Earth". Animal and plant life dispersed broadly across this land, as documented by identical fossil species ...

Scientists crack code on tracking zebras

May 25, 2011

Field biologists following thousands of wild zebras in Africa used to joke about how nice it would be to have a bar code reader to help them identify and catalogue individual animals.

Recommended for you

Biologists help solve fungi mysteries

4 hours ago

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...