Cells use Velcro-like mechanism to keep viruses from spreading

Dec 07, 2007

Like mobsters, cells keep their friends close and their enemies — at least some of them — closer. According to new results from HIV researchers at Rockefeller University, one way that human cells prevent certain viruses from raging out of control is by blocking new viral particles from ever leaving an infected cell’s surface. And, they believe, HIV thrives in part because it has evolved the ability to get around this obstacle.

Viruses can only reproduce using the mechanisms and material of their hosts. Some of them — the so-called “enveloped” viruses, which are encapsulated inside a lipid membrane — assemble at the host cell’s outer membrane and then bud off during their release.

Now, a recent study by Associate Professor Paul Bieniasz, head of Rockefeller’s Laboratory of Retrovirology and a researcher at the Aaron Diamond AIDS Research Center, has shown that a human protein thwarts the spread of these enveloped viruses by preventing them from departing from the cell’s surface. By watching particles of HIV as well as virus-like particles made from Ebola virus structural proteins, Bieniasz and first author Stuart Neil, a postdoc in the lab, found that an immune protein, known as interferon, actually instructs cells to tether enveloped viruses to the cell membrane like Velcro.

Prior research by Neil and Bieniasz has shown that when HIV particles lack a protein called Vpu, they’re usually unable to free themselves from the plasma membrane and remain stuck on the cell surface. “If a virus-infected cell behaves altruistically, by keeping virus particles tethered to its surface, it can prevent its brothers (or sisters) from becoming infected,” Bieniasz says. “And so we think HIV has evolved the Vpu protein in order to counteract that behavior.”

When they treated HIV-infected cells with interferon, the researchers found that they were able to almost completely eliminate replication of a mutant HIV-1 strain that lacked Vpu. “The virus won’t grow in the presence of interferon unless it has the Vpu gene. And in a person, it’s very likely to encounter interferon,” Neil says. “In fact, we know that people infected with HIV make reasonable amounts of interferon, probably in response to that infection.”

To see whether interferon-induced virus retention was specific to HIV or whether it could work against other enveloped virus particles, Neil and Bieniasz used a protein from Ebola to create particles that act like the Ebola virus and tested interferon against them. Despite the fact that Ebola has a totally different genetic makeup, interferon restrained the release of these particles too. But when the researchers then expressed Vpu in cells that were also making Ebola-like particles, the budding particles freed themselves from the membrane with little difficulty.

“We think that the ‘stickiness’ induced by interferon is completely non-specific, because it works on viruses that are totally different from each other. The only thing they have in common is an outer membrane,” Neil says. It’s a way for cells to inhibit virus replication broadly without having to launch attacks specific to each invader.

This suggests that HIV evolved Vpu specifically to overcome the human interferon response. “It acquired a whole new gene whose function is to counteract a defense mechanism that the cell has evolved,” Neil says. “If one could devise a way to inhibit Vpu activity, that could, in principle, be a reasonable treatment strategy, and perhaps allow an interferon system to work more effectively against HIV.”

Citation: Cell Host & Microbe 2(3): 193–203 (September 13, 2007)

Source: Rockefeller University

Explore further: New class of insecticides offers safer, more targeted mosquito control

Related Stories

Deadly virus strips away immune system's defensive measures

Dec 12, 2007

When the alert goes out that a virus has invaded the body, cells that have yet to be attacked prepare by "armoring" themselves for combat, attaching specific antiviral molecules to many of their own proteins to help resist ...

Recommended for you

Scientists discover new 'transformer frog' in Ecuador

8 hours ago

It doesn't turn into Prince Charming, but a new species of frog discovered in Ecuador has earned the nickname "transformer frog" for its ability to change its skin from spiny to smooth in five minutes.

Longer DNA fragments reveal rare species diversity

9 hours ago

A challenge in metagenomics is that the more commonly used sequencing machines generate data in short lengths, while short-read assemblers may not be able to distinguish among multiple occurrences of the ...

Scientists say polar bears won't thrive on land food

9 hours ago

A group of researchers say polar bears forced off melting sea ice will not find enough food to replace their current diet of fat-laden marine mammals such as seals, a conclusion that contradicts studies indicating ...

The vital question: Why is life the way it is?

10 hours ago

The Vital Question: Why is life the way it is? is a new book by Nick Lane that is due out on April 23rd. His question is not one for a static answer but rather one for a series of ever sharper explanations—explanations that a ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.