The closest look ever at native human tissue

Dec 05, 2007
The closest look ever at native human tissue
This 3-D reconstruction of a human skin cell was produced by electron tomography and shows organelles in different colours: regions of cell-cell contact (sandy brown), nucleus and nuclear envelope (blue) with pores (red), microtubules (green), mitochondria (purple), endoplasmic reticulum (steel blue). Credit: Achilleas Frangakis EMBL

Seeing proteins in their natural environment and interactions inside cells has been a long-standing goal. Using an advanced microscopy technique called cryo-electron tomography, researchers from the European Molecular Biology Laboratory [EMBL] have visualised proteins responsible for cell-cell contacts for the first time. In this week’s issue of Nature they publish the first 3D image of human skin at molecular resolution and reveal the molecular Velcro-like organisation that interlinks cells.

“This is a real breakthrough in two respects,” says Achilleas Frangakis, group leader at EMBL. “Never before has it been possible to look in three dimensions at a tissue so close to its native state at such a high resolution. We can now see details at the scale of a few millionths of a millimetre. In this way we have gained a new view on the interactions of molecules that underlie cell adhesion in tissues – a mechanism that has been disputed over decades.”

So far, the only information available about a protein’s position and interactions in a cell was based on either light microscopy images at poor resolution or techniques that remove proteins from their natural context. Frangakis and his group have been developing a technique called cryo-electron tomography, with which a cell or tissue is instantly frozen in its natural state and then examined with an electron micro-scope. Electron microscopy normally requires tissue to be treated with chemicals or coated in metal, a procedure that disturbs the natural state of a sample. With cyro-electron tomography, images are taken of the untreated sample from different directions and assembled into an accurate 3D image by a computer.

The researchers applied this technique to observe proteins that are crucial for the integrity of tissues and organs like the skin and the heart, but also play an important role in cell proliferation. These proteins, called cadherins, are anchored in cell membranes and interact with each other to bring cells close together and interlink them tightly.

“We could see the interaction between two cadherins directly, and this revealed where the strength of human skin comes from,” says Ashraf Al-Amoudi, who carried out the work in Frangakis’ lab. “The trick is that each cadherin binds twice: once to a molecule from the juxtaposed cell, and once to its next-door neighbour. The system works a bit like specialised Velcro and establishes very tight contacts between cells.”

The new insights into the cadherin system broadens the understanding of structural aspects of cell adhesion and shed light on other crucial processes such as cell proliferation. The technical advances achieved in cryo-electron tomography of frozen sections open up new possibilities to study more systems at native conditions with molecular resolution.

Source: European Molecular Biology Laboratory

Explore further: Dwindling wind may tip predator-prey balance

add to favorites email to friend print save as pdf

Related Stories

Decoding 'sweet codes' that determine protein fates

Sep 15, 2014

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

Protein courtship revealed through chemist's lens

Sep 15, 2014

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Protein secrets of Ebola virus

Sep 15, 2014

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Recommended for you

Dwindling wind may tip predator-prey balance

Sep 19, 2014

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

Sep 19, 2014

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 0