Nanotech to Improve Satellites and Solar Cells

Mar 09, 2006

More efficient space solar cells could mean better imagery satellites and improved solar energy technology. Scientists at the NanoPower Research Labs at Rochester Institute of Technology, led by director Ryne Raffaelle, are using nanotechnology to explore this possibility through a project funded by an $847,109 grant from the U.S. Department of Defense.

The project aims to take current state-of-the-art solar cells used for space power to the next level by developing nanostructured materials and, ultimately, by producing nanostructured cells. The program may extend to three and half years, with total funding reaching $3 million.

“If successful, the results of this program will improve current solar array and satellite technology, and lay the foundation for long-term improvement in our ability to use solar energy,” Raffaelle says.

Unique to this project is the ability to exploit the fundamental behavior of nanoscale crystals, also known as quantum dots, which alter the way a solar cell absorbs light and converts it into electricity. According to Raffaelle, the electrical, optical, mechanical and even thermal properties of nanomaterials can be controlled by changing the particle size, making them highly useful in semiconductor device development.

Today’s current solar-cell technology used for space power relies upon three individual photovoltaic junctions used in a series. These so-called triple-junction solar cells—consisting of the chemical compounds, germanium, gallium arsenide and indium gallium phosphide—are grown latticed-matched on top of one another. Raffaelle’s team will augment the middle cell in the three-layered sandwich with a quantum dot array to enhance its short-circuit current and improve the overall efficiency of the triple junction cell.

“The use of the quantum confinement offered by nanostructured materials provides us with a new means of breaking out of the normal design constraints associated with ordinary crystalline device growth,” says Raffaelle. “The theoretical improvements that this can provide are truly remarkable. It’s our job to turn these theories into experimental realities.”

Raffaelle’s nanotechnology research illustrates the possibilities of the newly opened IT Collaboratory on the RIT campus.

“When Governor Pataki announced the creation of the IT Collaboratory at RIT, he did so with the understanding that the center would participate in the creation of a stronger, more vibrant economy as a result of its technological innovations,” says Russell Bessette, M.D., executive director of NYSTAR. “This DOD award will help further cement RIT’s role as an engine for economic growth and opportunity in the Finger Lakes region as well as statewide.”

Source: Rochester Institute of Technology

Explore further: Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch

add to favorites email to friend print save as pdf

Related Stories

Ridding the sea and land from toxic plastics fragments

Sep 11, 2014

Plastic products made of PVC, Polystyrene and other prominent plastics are flooding the market. They are a growing threat to the environment, as they are found in the sea or dumped in land fills. But in a ...

Mass spectrometry in your hand

Sep 09, 2014

If you're out in the field doing environmental testing, food checks, forensic work, or other chemical analysis, mass spectrometry is an extremely accurate detection tool with one huge drawback: You can lose ...

Recommended for you

Twisted graphene chills out

23 hours ago

(Phys.org) —When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown.

Researchers use liquid inks to create better solar cells

23 hours ago

(Phys.org) —The basic function of solar cells is to harvest sunlight and turn it into electricity. Thus, it is critically important that the film that collects the light on the surface of the cell is designed ...

User comments : 0