Humans not the major target of Shiga toxin

Dec 03, 2007

If you’ve survived Shiga toxin and the after-effects of food poisoning, you may have been the innocent victim of a battle for survival between predator and prey.

Bacteria that carry a virus (a bacteriophage) that packs the Shiga toxin gene (Stx) may depend on it for protection from bacterial predators like the ciliated protozoan Tetrahymena. This is small comfort if you’ve just consumed that.

Food poisoning victims -- as a result, for example, of consuming Shiga-packing E.coli in a contaminated bag of spinach -- have always had the cold comfort of being told that not all common bacteria make humans extremely sick, only the strains that have integrated the Shiga gene into their DNA. These bacteria can produce large amounts of the Shiga toxin and release it into the surrounding environment.

Leaving sick humans aside for a moment, Gerald Koudelka, Todd Hennessey, and colleagues from the University at Buffalo in Amherst, New York, wondered what evolutionary advantage the bacteria would derive from carrying around such a prickly viral hitchhiker. They hypothesized that the Stx gene might give the bacterial host an equalizer against bacterial predators.

“Humans may not be the major target of this toxin,” explains Koudelka. “Instead, they might be simply caught in the cross-fire in this ancient battle between prey and predators.”

To test their hypothesis, the researchers grew Tetrahymena with an E. coli strain (EDL933) that carries the Stx gene. It worked, at least, for the EDL933 that grew successfully in co-cultures with Tetrahymena. In this hostile environment, it was the predator, Tetrahymena, that was killed by the bacteria’s Shiga toxin. An E. coli strain (W3110) lacking Stx did poorly with Tetrahymena as roommates. The Tetrahymena had them for lunch.

The Shiga toxin kills by binding to a receptor on the surface of Tetrahymena. Adding protein subunits that block toxin binding to the protozoan predator prevented killing by Shiga toxin. Humans have the same surface receptor for Shiga toxin as do Tetrahymena, which gives biologists and produce packers a close interest in the deadly duel between Tetrahymena and Shiga-packing E. coli.

The Koudelka and Hennessey labs are continuing to characterize the route of Shiga toxin entry into the cytoplasm of Tetrahymena, its mode of killing, and the ability of Tetrahymena to develop resistance to Shiga toxin. The protozoan might make a model cellular system for Shiga detoxification, which one day might relieve some of the stress around the salad bar, say Koudelka and Hennessey.

Source: American Society for Cell Biology

Explore further: NYSCF Research Institute announces largest-ever stem cell repository

add to favorites email to friend print save as pdf

Related Stories

Arguments made in ex-dictator's suit against game

3 hours ago

(AP)—A judge has heard arguments from lawyer and former New York City Mayor Rudy Giuliani calling for the dismissal of a lawsuit filed against video game giant Activision by former Panamanian dictator Manuel Noriega.

All in a flap: Seychelles fears foreign bird invader

3 hours ago

It was just a feather: but in the tropical paradise of the Seychelles, the discovery of parakeet plumage has put environmentalists in a flutter, with a foreign invading bird threatening the national parrot.

Twitter tweets start to sing

3 hours ago

Twitter began letting people instantly listen to music and other audio by clicking on tweets from the popular messaging service.

Recommended for you

Helping sweet cherries survive the long haul

5 minutes ago

A new study says that cherry producers need to understand new intricacies of the production-harvest-marketing continuum in order to successfully move sweet cherries from growers to end consumers. For example, the Canadian ...

YEATS protein potential therapeutic target for cancer

22 minutes ago

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

User comments : 0