New multifunctional chip to meld memory, logic and communications functions

Mar 08, 2006

The Department of Defense has awarded up to $5 million over five years for a multi-university research initiative led by David D. Awschalom, a professor of physics and of electrical and computer engineering, to develop a chip that can independently process electronic, magnetic, and optical information and convert from any one type to any other type of information.

Described as a "multifunctional" chip, it would be highly compact and use considerably less power than would a system constructed from several components to perform the same function. Current electronic devices rely on the electron charge to transport and store information, but the new technological approach to be pursued by this collaboration relies on using another property of the electron, called "spin," to store and transport information, and to interface with optics and magnetics.

At UCSB, Awschalom is director of the Center for Spintronics and Quantum Computation. He also serves as associate scientific director of the California NanoSystems Institute (CNSI). The spintronics center that Awschalom heads is affiliated with the CNSI, one of the four California Institutes for Science and Innovation established in 2000 and supported by the state and private industry. The nanosystems institute is a joint project of UC Santa Barbara and UCLA.

Awschalom and his research group have pioneered new experimental techniques that made possible the discovery of long-lived electron spin lifetimes and coherence in semiconductors and nanostructures. They recently demonstrated all-electrical generation and manipulation of both electron and nuclear spins in prototype solid-state devices. This work opens the door to new opportunities for research and technology in the emerging fields of semiconductor spintronics and quantum computation, including the development of fundamentally new systems for high density storage, ultra-fast information processing, and secure communication.

The MURI consortium includes UC Santa Barbara, Cornell University, Pennsylvania State University, The University of Iowa, The University of Minnesota, and The University of Virginia. The program will be monitored by Chagaan Baatar of the Office of Naval Research.

Source: University of California - Santa Barbara

Explore further: Sensitive detection method may help impede illicit nuclear trafficking

add to favorites email to friend print save as pdf

Related Stories

Spintronics approach enables new quantum technologies

Jun 04, 2013

(Phys.org) —A team of researchers including members of the University of Chicago's Institute for Molecular Engineering highlight the power of emerging quantum technologies in two recent papers published ...

Quantum computing moves forward

Mar 08, 2013

New technologies that exploit quantum behavior for computing and other applications are closer than ever to being realized due to recent advances, according to a review article published this week in the ...

Subatomic quantum memory in diamond demonstrated

Jun 27, 2011

Physicists working at the University of California, Santa Barbara and the University of Konstanz in Germany have developed a breakthrough in the use of diamond in quantum physics, marking an important step ...

Recommended for you

CERN: World-record current in a superconductor

17 hours ago

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

User comments : 0

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Low Vitamin D may not be a culprit in menopause symptoms

A new study from the Women's Health Initiative (WHI) shows no significant connection between vitamin D levels and menopause symptoms. The study was published online today in Menopause, the journal of The North American Menopa ...

Astronomers: 'Tilt-a-worlds' could harbor life

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...