Tailored for optical applications

Nov 09, 2007

When a calcite crystal is placed onto a printed page, the letters appear doubled. This is the result of a property called birefringence. Scientists at the Simon Fraser University in Canada have now developed a material that is among the most birefringent solids ever observed. As described in the journal Angewandte Chemie, this material is not a mineral, but rather a coordination polymer.

Refraction is the change in direction of a wave of light when it passes from air into water or a crystal. It is caused by a local change in the speed of propagation. In the case of birefringence, the light is divided into two perpendicularly polarized beams, which move at different speeds and exit the material shifted relative to each other. The source of this effect is a crystal lattice that has different optical properties along its various axes (anisotropy).

Birefringent optical components are usually made of calcite. The critical value for these applications is the difference in the refractive index of light in two directions in the crystal, the birefringence, which is 0.17 for calcite.

The team led by Daniel B. Leznoff and Zuo-Guang Ye has now produced a highly birefringent coordination polymer. Coordination polymers are one-, two-, or three-dimensional bridged metal complexes. The advantage to this type of compound is the limitless number of design possibilities: The individual components—metal center, chelating ligands, and bridging ligands—can be selected and combined almost at will to get the desired material properties.

Leznoff’s team, spearheaded in the lab by Michael J. Katz, decided to use a “terpy” ligand, a flat ring system consisting of three pyridine units (six-membered aromatic rings with one nitrogen atom), and lead as the metal center. The complexes are linked by linear bridging ligands made of a central silver or gold ion and two cyanide groups to form two-dimensional layers. If the central lead atom is replaced with manganese, one-dimensional ladder-like structures are formed. Within their crystals, however, the lead and manganese polymers have analogous arrangements: the terpy molecules are piled up plane-to-plane, perpendicular to the axis of crystal growth. This is clearly the crucial factor leading to the high birefringence, which reaches values from 0.43 to just under 0.4, significantly higher than those of the numerous inorganic birefringent materials.

Improved optical data storage and data transfer in communications technology are possible applications for such highly birefringent materials.

Source: Wiley

Explore further: Video: How did life on Earth begin?

add to favorites email to friend print save as pdf

Related Stories

US poverty rate dipped slightly in 2013

26 minutes ago

The number of people living in poverty in the United States dropped slightly in 2013 to 45.3 million, according to figures released Tuesday by the Census Bureau.

Tornadoes occurring earlier in 'Tornado Alley'

39 minutes ago

Peak tornado activity in the central and southern Great Plains of the United States is occurring up to two weeks earlier than it did half a century ago, according to a new study whose findings could help ...

And so they beat on, flagella against the cantilever

41 minutes ago

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Recommended for you

Chemical biologists find new halogenation enzyme

Sep 15, 2014

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

Sep 15, 2014

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

Sep 15, 2014

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

User comments : 0