Tailored for optical applications

Nov 09, 2007

When a calcite crystal is placed onto a printed page, the letters appear doubled. This is the result of a property called birefringence. Scientists at the Simon Fraser University in Canada have now developed a material that is among the most birefringent solids ever observed. As described in the journal Angewandte Chemie, this material is not a mineral, but rather a coordination polymer.

Refraction is the change in direction of a wave of light when it passes from air into water or a crystal. It is caused by a local change in the speed of propagation. In the case of birefringence, the light is divided into two perpendicularly polarized beams, which move at different speeds and exit the material shifted relative to each other. The source of this effect is a crystal lattice that has different optical properties along its various axes (anisotropy).

Birefringent optical components are usually made of calcite. The critical value for these applications is the difference in the refractive index of light in two directions in the crystal, the birefringence, which is 0.17 for calcite.

The team led by Daniel B. Leznoff and Zuo-Guang Ye has now produced a highly birefringent coordination polymer. Coordination polymers are one-, two-, or three-dimensional bridged metal complexes. The advantage to this type of compound is the limitless number of design possibilities: The individual components—metal center, chelating ligands, and bridging ligands—can be selected and combined almost at will to get the desired material properties.

Leznoff’s team, spearheaded in the lab by Michael J. Katz, decided to use a “terpy” ligand, a flat ring system consisting of three pyridine units (six-membered aromatic rings with one nitrogen atom), and lead as the metal center. The complexes are linked by linear bridging ligands made of a central silver or gold ion and two cyanide groups to form two-dimensional layers. If the central lead atom is replaced with manganese, one-dimensional ladder-like structures are formed. Within their crystals, however, the lead and manganese polymers have analogous arrangements: the terpy molecules are piled up plane-to-plane, perpendicular to the axis of crystal growth. This is clearly the crucial factor leading to the high birefringence, which reaches values from 0.43 to just under 0.4, significantly higher than those of the numerous inorganic birefringent materials.

Improved optical data storage and data transfer in communications technology are possible applications for such highly birefringent materials.

Source: Wiley

Explore further: Researchers open possible avenue to better electrolyte for lithium ion batteries

add to favorites email to friend print save as pdf

Related Stories

Sony threatens to sue for publishing stolen emails

34 minutes ago

A lawyer representing Sony Pictures Entertainment is warning news organizations not to publish details of company files leaked by hackers in one of the largest digital breaches ever against an American company.

Brazil: Google fined in Petrobras probe

4 minutes ago

A Brazilian court says it has fined Google around $200,000 for refusing to intercept emails needed in a corruption investigation at state-run oil company Petrobras.

Microsoft builds support over Ireland email case

43 minutes ago

Microsoft said Monday it had secured broad support from a coalition of influential technology and media firms as it seeks to challenge a US ruling ordering it to hand over emails stored on a server in Ireland.

Sony meeting after hackers vow 'Christmas gift'

54 minutes ago

Sony Pictures organized a town hall-style meeting with staff Monday to discuss the massive cyber attack on the Hollywood studio, a day after hackers promised a big "Christmas gift."

Recommended for you

'Global positioning' for molecules

23 hours ago

In everyday life, the global positioning system (GPS) can be employed to reliably determine the momentary location of one en route to the desired destination. Scientists from the Institute of Physical and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.