Unlocking the function of enzymes

Nov 06, 2007

Fitting a key into a lock may seem like a simple task, but researchers at Texas A&M University are using a method that involves testing thousands of keys to unlock the functions of enzymes, and their findings could open the door for new targets for drug designs.

Texas A&M researcher Frank Raushel is part of a team of scientists who modified a technique called “molecular docking” to predict which molecule, called a substrate, triggers an enzyme into action, enabling them to decipher an enzyme’s function based on its structure alone.

The team’s paper was published in the journal Nature.

Most biological processes depend on enzymes, which are proteins that speed up chemical reactions, but the function of many enzymes remains a mystery.

“There are thousands of molecules that could be substrates [for a specific enzyme], and it would take too long to physically test them all,” Raushel said. “So we decided there was a need for a new method to determine the function of enzymes.”

The team started with the three-dimensional X-ray structure of an enzyme and then used a computer to try to fit different smaller molecules into the active site of the enzyme like pieces in a puzzle.

“Each enzyme has a specific size and shape,” Raushel said, “and you can use a computer to take small molecules and fit them into the active site of an enzyme one by one and score them on how well they fit. It’s more or less like fitting a key into a lock, but a lot more difficult since both the enzyme and the substrate are conformationally flexible.”

After the computer scores the molecules on how well they fit the enzyme, it ranks their order, and the researchers can then use the prioritized list to decide which molecules to physically test.

“As far as we know, this is the first time anybody has used molecular docking to predict the function of an enzyme,” Raushel said. “And it was verified by both experiment and X-ray crystallography.”

Other methods researchers use to try to determine an enzyme’s function or substrate specificity include physically testing thousands of possible molecules, gathering information from the nearby genes, and comparing the structure of the enzyme to that of other enzymes with known functions. “I think that in the end, we’ll have to use all of these methods together,” Raushel said. “One single method just won’t suffice.”

Raushel and his team plan to continue using their molecular docking method to find the function of other enzymes.

“We’re looking at other X-ray structures of proteins that have unknown functions, and we’re working to fill the gap,” Raushel said. “We’re trying to see how general this method is going to be or if we were just lucky in this particular case.”

Raushel and Texas A&M post-doctoral associate Ricardo Marti-Arbona work in conjunction with Brian Shoichet at the University of California, San Francisco, and Steven Almo from the Albert Einstein College of Medicine in New York.

Raushel hopes that over the next five years, the team can start to use its findings to locate potential targets for new drugs.

“Understanding the substrate specificity of certain enzymes could allow researchers to differentiate enzymes that catalyze one reaction in pathogenic organisms and a slightly different reaction in human systems,” Raushel said. “This would allow scientists to design [drugs] that would specifically target a pathogenic organism while not affecting the human enzyme.”

Source: Texas A&M University

Explore further: Lemurs match scent of a friend to sound of her voice

add to favorites email to friend print save as pdf

Related Stories

Researcher working on destruction of chemical weapons

Sep 24, 2008

America's war on terror includes fighting the dark side of deadly chemical agents, and Texas A&M University chemist Dr. Frank Raushel is helping with the fight by developing an enzyme that might neutralize one such chemical ...

Translating form into function

Jul 01, 2007

In the last 40 years, scientists have perfected ways to determine the knot-like structure of enzymes, but they’ve been stumped trying to translate the structure into an understanding of function – what the enzyme actually ...

Recommended for you

Lemurs match scent of a friend to sound of her voice

12 hours ago

Humans aren't alone in their ability to match a voice to a face—animals such as dogs, horses, crows and monkeys are able to recognize familiar individuals this way too, a growing body of research shows.

Chrono, the last piece of the circadian clock puzzle?

14 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...