Bioengineers create stable networks of blood vessels

Feb 28, 2006
Bioengineers create stable networks of blood vessels
PNAS Cover, February 2006

Yale biomedical engineers have created an implantable system that can form and stabilize a functional network of fine blood vessels critical for supporting tissues in the body, according to a report in the Proceedings of the National Academy of Sciences.

For body tissue to survive it must receive oxygen delivered through the finest of blood vessels. Led by Erin Lavik, assistant professor of Biomedical Engineering, this study shows that the fine network of blood vessels can be formed. Further, detailed microscopic studies showed that the vascular networks were stable as implants for up to six weeks and were able to connect with larger blood vessel structures.

"This expands our understanding of the neuro-vascular niche and opens up ways to address repair of severed nerves," said Joseph Madri professor of pathology at Yale School of Medicine and a co-author. "We can now study what affects the attraction and repulsion of nerve growth and drug delivery in a model system that can be used in vitro and in vivo."

The researchers used two important engineering enhancements to develop stable functional microcirculation. First, they created a "micro-scaffold" of a macroporous hydrogel polymer. The hydrogel is a three-dimensional, sponge-like material -- highly water-saturable, with a structure of connected pores for cells to grow on and through.

Second, they seeded the hydrogel scaffolds with endothelial cells that make up blood vessel structure along with nerve progenitor cells from the brain. Because there is often an association of nerve connections with vascular networks, they tested to see if a combination of the blood vessel-forming and nerve-forming cells would enhance development of the vascular networks.

"By their nature, hydrogels are well suited for the transport of soluble factors, nutrients or drugs, and waste," said Lavik. "The hydrogel scaffold materials are generally highly biocompatible and safe to implant due to the presence of large volumes of water."

Source: Yale University

Explore further: Archeologist urges researchers to study Libya from afar during wartime

add to favorites email to friend print save as pdf

Related Stories

Davos elites warned about catastrophic cyberattacks

2 hours ago

Attacks on power plants, telecommunications and financial systems, even turning all of Los Angeles' traffic lights green: Davos elites were warned Saturday of the terrifying possibilities of modern cyber terrorism.

Recommended for you

Satire has a history of informing during times of crisis

5 hours ago

Just as only the jester can tell the King the truth, satire performs a vital function in democratic society by using humor to broach taboo subjects, especially in times of crisis, according to a book by Penn State researchers.

Long-necked 'dragon' discovered in China

19 hours ago

University of Alberta paleontologists including PhD student Tetsuto Miyashita, former MSc student Lida Xing and professor Philip Currie have discovered a new species of a long-necked dinosaur from a skeleton ...

The largest known muntiacine found in China

20 hours ago

Dr. HOU Sukuan from the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Chinese Academy of Sciences reported a new species of muntiacine Euprox in the journal of Zootaxa 3911 (1) recent ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.