Japanese Device Uses Laser Plasma to Display 3D Images in the Air

Feb 27, 2006 feature
A 3D-object displayed using a 3D-image spatial drawing device
A 3D-object displayed using a 3D-image spatial drawing device. Credit: National Institute of Advanced Industrial Science and Technology.

A collaboration of the Japanese National Institute of Advanced Industrial Science and Technology (AIST), Keio University and Burton Inc. has produced a device to display "real 3D images" consisting of dot arrays in empty space.

Many previous displays in 3D have been virtual images on 2D planes which, due to human binocular disparity, appear as 3D. However, the limitation of our visual field and the physical discomfort caused by wrongly identifying virtual images makes these displays less than perfect.

The new device uses the plasma emission phenomenon near the focal point of focused laser light. By controlling the position of the focal point in the direction of the x-, y-, and z-axes, real 3D-images in air (3D-space) can be displayed.

Overview of the 3D-image spatial drawing device
Overview of the 3D-image spatial drawing device. Credit: National Institute of Advanced Industrial Science and Technology.

Our living space and the objects within it are three-dimensional but while 3D imaging is well documented on the Internet, we don’t see "real 3D-images" on our computer screens. This is because our monitors are unable to display them.

Keio University and Burton Inc. noticed that, when laser beams are strongly focused, air plasma emission can only be induced near the focal point. So, they experimented by fabricating a device to display 2D-images in the air. The images are constructed from dot arrays produced by a technique combining a laser light source and galvanometric mirrors. To form 3D-images in the air, the scanning of the focal point in the depth direction along the laser optical axis is essential. However, to do this, the quality of the laser and the technique for varying the position of the focal point must be improved. This explains why we do not yet have the technology to display 3D images.

By modifying the 2D image device with a linear motor system and a high-quality and high-brightness infrared pulse, the AIST, Keio University and Burton Inc. created a spatial display of "real 3D images" consisting of dot arrays.

The linear motor system can vary the position of the laser focal point by high-speed scanning of a lens set on the motor orbit. Incorporation of this system makes the image scanning in the direction of the z-axis possible. For scanning in the x and y axis directions, conventional galvanometric mirrors are used.

The high-quality and high–brightness infrared pulsed laser (repetition frequency of pulse: approximately 100 Hz), enables plasma production to be more precisely controlled, resulting in brighter and higher contrast image drawing. Furthermore, the distance between the device and drawing points can be extended by several meters.

The emission time of the laser pulse light is approximately a nanosecond (10-9 sec). The device uses one pulse for each dot. The human eye will recognize the after-image effect of plasma emission from displays up to 100 dot/sec. By synchronizing these pulses and controlling them with software, the device can draw any 3D objects in air.

Various 2D and 3D objects drawn by the display device
Various 2D and 3D objects drawn by the display device. Credit: National Institute of Advanced Industrial Science and Technology

Copyright 2006 PhysOrg.com

Explore further: IHEP in China has ambitions for Higgs factory

add to favorites email to friend print save as pdf

Related Stories

Making synthetic diamond crystals in a plasma reactor

Mar 21, 2014

Synthetic diamond crystals are of interest to many industrial sectors. Their unique properties make them a suitable material for numerous applications including lenses for high-energy laser optics, X-ray ...

Bubbles are the new lenses for nanoscale light beams

Aug 09, 2013

Bending light beams to your whim sounds like a job for a wizard or an a complex array of bulky mirrors, lenses and prisms, but a few tiny liquid bubbles may be all that is necessary to open the doors for ...

Super-fine sound beam could one day be an invisible scalpel

Dec 19, 2012

A carbon-nanotube-coated lens that converts light to sound can focus high-pressure sound waves to finer points than ever before. The University of Michigan engineering researchers who developed the new therapeutic ultrasound ...

Recommended for you

Nike krypton laser achieves spot in Guinness World Records

35 minutes ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Unleashing the power of quantum dot triplets

4 hours ago

Quantum computers have yet to materialise. Yet, scientists are making progress in devising suitable means of making such computers faster. One such approach relies on quantum dots—a kind of artificial atom, ...

Chemist develops X-ray vision for quality assurance

4 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

4 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

22 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

subbu
not rated yet Jun 16, 2008
if nice and fantastic

i am doing a project i need ur helpcan u help in diaplaying iamages in air and the instruments and the design of the prodect details and cost to me
subbu
Jun 16, 2008
This comment has been removed by a moderator.
bijel
not rated yet May 02, 2009
hey i got an incridable invention to make more better 3d picture in space with a simple technic using this japanese technology