Spitzer Witnessed Galactic Collision

Sep 10, 2004
Scene of Galactic Collision

NASA's Spitzer Space Telescope has set its infrared sight on a major galactic collision and witnessed not death, but a teeming nest of life. The colliding galaxies, called the Antennae galaxies, are in the process of merging together. As they churn into each other, they throw off massive streamers of stars and dark clouds of dust. Spitzer's heat-seeking eyes peered through that dust and found a hidden population of newborn stars. The new Spitzer image is reported in one of 86 Spitzer papers published in the September issue of The Astrophysical Journal Supplement. This special all-Spitzer issue comes just after the one-year anniversary of the observatory's launch, and testifies to its tremendously successful first year in space.

"This abundance of Spitzer papers just one year after launch shows that the telescope is truly providing a new window on the universe," said Dr. Michael Werner, project scientist for Spitzer at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "These papers report the earliest results, so the best is yet to come."

In the latest Antennae galaxies study, Spitzer uncovered a new generation of stars at the site where the two galaxies clash.

"We theorized that there were stars forming at that site, but we weren't sure to what degree," said Dr. Zhong Wang, lead author of the new paper and an astronomer at the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. "Now we see that the majority of star-forming activity in both galaxies occurs in the overlap regions where the two meet."

The Antennae galaxies are a classic example of a galactic merger in action. These two spiral galaxies, located 68 million light-years away from Earth, began falling into each other around a common center of gravity about 800 million years ago. As they continue to crash together, clouds of gas are shocked and compressed in a process thought to trigger the birth of new stars. Astronomers believe that the two galaxies will ultimately merge into one spheroidal-shaped galaxy, leaving only hints of their varied pasts.

Galactic mergers are common throughout the universe and play a key role in determining how galaxies grow and evolve. Our own Milky Way galaxy, for example, will eventually collide with our closest neighbor, the Andromeda galaxy.

Previous images of the Antennae taken by visible-light telescopes show striking views of the swirling duo, with bright pockets of young stars dotting the spiral arms. At the center of the galaxies, however, where the two overlap, only a dark cloud of dust can be seen. In the new false-color Spitzer image, which has been combined with an image from a ground-based, visible-light telescope to highlight new features, this cloud of buried stars appears bright red. The visible-light information, on the other hand, is colored blue and indicates regions containing older stars. The nuclei, or centers, of the two galaxies are white.

"This more complete picture of star-formation in the Antennae will help us better understand the evolution of colliding galaxies, and the eventual fate of our own," said Dr. Giovanni Fazio, a co-author of the research and an astronomer at the Harvard-Smithsonian Center for Astrophysics." Fazio is principal investigator for the infrared array camera on Spitzer, which captured the new Antennae image.

JPL manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. JPL is a division of Caltech. Spitzer's infrared array camera was built by NASA Goddard Space Flight Center, Greenbelt, Md.

Information about Spitzer can be found at www.spitzer.caltech.edu .

Explore further: Mysteries of space dust revealed

add to favorites email to friend print save as pdf

Related Stories

FIXD tells car drivers via smartphone what is wrong

2 hours ago

A key source of anxiety while driving solo, when even a bothersome back-seat driver's comments would have made you listen: the "check engine" light is on but you do not feel, smell or see anything wrong. ...

Team pioneers strategy for creating new materials

3 hours ago

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Shell files new plan to drill in Arctic

3 hours ago

Royal Dutch Shell has submitted a new plan for drilling in the Arctic offshore Alaska, more than one year after halting its program following several embarrassing mishaps.

Aging Africa

3 hours ago

In the September issue of GSA Today, Paul Bierman of the University of Vermont–Burlington and colleagues present a cosmogenic view of erosion, relief generation, and the age of faulting in southernmost Africa ...

Recommended for you

Mysteries of space dust revealed

Aug 29, 2014

The first analysis of space dust collected by a special collector onboard NASA's Stardust mission and sent back to Earth for study in 2006 suggests the tiny specks open a door to studying the origins of the ...

A guide to the 2014 Neptune opposition season

Aug 29, 2014

Never seen Neptune? Now is a good time to try, as the outermost ice giant world reaches opposition this weekend at 14:00 Universal Time (UT) or 10:00 AM EDT on Friday, August 29th. This means that the distant ...

How can we find tiny particles in exoplanet atmospheres?

Aug 29, 2014

It may seem like magic, but astronomers have worked out a scheme that will allow them to detect and measure particles ten times smaller than the width of a human hair, even at many light-years distance.  ...

Spitzer telescope witnesses asteroid smashup

Aug 28, 2014

(Phys.org) —NASA's Spitzer Space Telescope has spotted an eruption of dust around a young star, possibly the result of a smashup between large asteroids. This type of collision can eventually lead to the ...

User comments : 0