Spitzer Witnessed Galactic Collision

Sep 10, 2004
Scene of Galactic Collision

NASA's Spitzer Space Telescope has set its infrared sight on a major galactic collision and witnessed not death, but a teeming nest of life. The colliding galaxies, called the Antennae galaxies, are in the process of merging together. As they churn into each other, they throw off massive streamers of stars and dark clouds of dust. Spitzer's heat-seeking eyes peered through that dust and found a hidden population of newborn stars. The new Spitzer image is reported in one of 86 Spitzer papers published in the September issue of The Astrophysical Journal Supplement. This special all-Spitzer issue comes just after the one-year anniversary of the observatory's launch, and testifies to its tremendously successful first year in space.

"This abundance of Spitzer papers just one year after launch shows that the telescope is truly providing a new window on the universe," said Dr. Michael Werner, project scientist for Spitzer at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "These papers report the earliest results, so the best is yet to come."

In the latest Antennae galaxies study, Spitzer uncovered a new generation of stars at the site where the two galaxies clash.

"We theorized that there were stars forming at that site, but we weren't sure to what degree," said Dr. Zhong Wang, lead author of the new paper and an astronomer at the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. "Now we see that the majority of star-forming activity in both galaxies occurs in the overlap regions where the two meet."

The Antennae galaxies are a classic example of a galactic merger in action. These two spiral galaxies, located 68 million light-years away from Earth, began falling into each other around a common center of gravity about 800 million years ago. As they continue to crash together, clouds of gas are shocked and compressed in a process thought to trigger the birth of new stars. Astronomers believe that the two galaxies will ultimately merge into one spheroidal-shaped galaxy, leaving only hints of their varied pasts.

Galactic mergers are common throughout the universe and play a key role in determining how galaxies grow and evolve. Our own Milky Way galaxy, for example, will eventually collide with our closest neighbor, the Andromeda galaxy.

Previous images of the Antennae taken by visible-light telescopes show striking views of the swirling duo, with bright pockets of young stars dotting the spiral arms. At the center of the galaxies, however, where the two overlap, only a dark cloud of dust can be seen. In the new false-color Spitzer image, which has been combined with an image from a ground-based, visible-light telescope to highlight new features, this cloud of buried stars appears bright red. The visible-light information, on the other hand, is colored blue and indicates regions containing older stars. The nuclei, or centers, of the two galaxies are white.

"This more complete picture of star-formation in the Antennae will help us better understand the evolution of colliding galaxies, and the eventual fate of our own," said Dr. Giovanni Fazio, a co-author of the research and an astronomer at the Harvard-Smithsonian Center for Astrophysics." Fazio is principal investigator for the infrared array camera on Spitzer, which captured the new Antennae image.

JPL manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. JPL is a division of Caltech. Spitzer's infrared array camera was built by NASA Goddard Space Flight Center, Greenbelt, Md.

Information about Spitzer can be found at www.spitzer.caltech.edu .

Explore further: Planck: Gravitational waves remain elusive

add to favorites email to friend print save as pdf

Related Stories

Extrasolar storms: How's the weather way out there?

Jan 13, 2015

Orbiting the Earth 353 miles above the ground, the Hubble Space Telescope silently pivots toward its new target. At the same time, flying 93 million miles away in interplanetary space, NASA's Spitzer Space ...

Image: Multicoloured view of supernova remnant

Dec 22, 2014

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Recommended for you

Planck: Gravitational waves remain elusive

14 hours ago

Despite earlier reports of a possible detection, a joint analysis of data from ESA's Planck satellite and the ground-based BICEP2 and Keck Array experiments has found no conclusive evidence of primordial ...

Going a long way to do a quick data collection

20 hours ago

Like many a scientist before me, I have spent this week trying to grow a crystal. I wasn't fussy, it didn't have to be a single crystal – a smush of something would have done – just as long as it had ...

How are planets formed?

20 hours ago

How did the Solar System's planets come to be? The leading theory is something known as the "protoplanet hypothesis", which essentially says that very small objects stuck to each other and grew bigger and ...

What's happening in the universe right now?

21 hours ago

There are some topics that get a little frustrating in their pedantry, but can really draw attention to the grand scope and mechanics in our Universe. This is definitely one of them.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.