Crystal to glass cooling model developed

Feb 22, 2006

University of Tokyo scientists have discovered why cooling sometimes causes liquid molecules to form disordered glasses, rather than ordered crystals.

Researchers Hiroshi Shintani and Hajime Tanaka have developed a two-dimensional model of a simple molecular system that can be tuned continuously from one state to another, including from a crystal to a plastic crystal to a glass containing crystalline clusters.

The authors take a liquid model whose molecules would naturally form an ordered crystalline structure and add a potential favoring formation of disordered clusters of five-fold crystals. The resulting frustration in the system can then be controlled to alter the degree to which the ordered structure is formed, against the number of disordered clusters within the liquid.

They say they are able to show the liquid naturally forms both types of structure in a dynamic system. The presence of the domains provides a natural explanation for the dramatic slowing down of the dynamics in a glassy system.

The research is explained in the March issue of Nature Physics.

Copyright 2006 by United Press International

Explore further: Why seashells' mineral forms differently in seawater

add to favorites email to friend print save as pdf

Related Stories

Atomic trigger shatters mystery of how glass deforms

Oct 18, 2014

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

Recommended for you

Unified theory for skyrmion-materials

5 hours ago

Magnetic vortex structures, so-called skyrmions, could in future store and process information very efficiently. They could also be the basis for high-frequency components. For the first time, a team of physicists ...

Scientists provide new data on the nature of dark matter

6 hours ago

Recent research conducted by scientists from the University of Granada sheds light on the nature of dark matter, one of the most important mysteries in physics. As indirect evidence provided by its gravitational ...

Why seashells' mineral forms differently in seawater

9 hours ago

For almost a century, scientists have been puzzled by a process that is crucial to much of the life in Earth's oceans: Why does calcium carbonate, the tough material of seashells and corals, sometimes take ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.