Crystal to glass cooling model developed

Feb 22, 2006

University of Tokyo scientists have discovered why cooling sometimes causes liquid molecules to form disordered glasses, rather than ordered crystals.

Researchers Hiroshi Shintani and Hajime Tanaka have developed a two-dimensional model of a simple molecular system that can be tuned continuously from one state to another, including from a crystal to a plastic crystal to a glass containing crystalline clusters.

The authors take a liquid model whose molecules would naturally form an ordered crystalline structure and add a potential favoring formation of disordered clusters of five-fold crystals. The resulting frustration in the system can then be controlled to alter the degree to which the ordered structure is formed, against the number of disordered clusters within the liquid.

They say they are able to show the liquid naturally forms both types of structure in a dynamic system. The presence of the domains provides a natural explanation for the dramatic slowing down of the dynamics in a glassy system.

The research is explained in the March issue of Nature Physics.

Copyright 2006 by United Press International

Explore further: World's first photonic pressure sensor outshines traditional mercury standard

add to favorites email to friend print save as pdf

Related Stories

Atomic trigger shatters mystery of how glass deforms

Oct 18, 2014

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

Supercritical fluids explained

May 26, 2014

When we boil a kettle, we observe what scientists call a phase transition: the water changes from being a liquid to a gas as water becomes less dense. One litre of water boils to give about 1,000 litres of ...

When things get glassy, molecules go fractal

Apr 24, 2014

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

Recommended for you

High-intensity sound waves may aid regenerative medicine

13 hours ago

Researchers at the University of Washington have developed a way to use sound to create cellular scaffolding for tissue engineering, a unique approach that could help overcome one of regenerative medicine's ...

Formula could shed light on global climate change

17 hours ago

Wright State University researchers have discovered a formula that accurately predicts the rate at which soil develops from the surface to the underlying rock, a breakthrough that could answer questions about ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.