How do cannabinoids make us feel that way?

Oct 09, 2007

Marijuana and its main psychoactive component, THC, exert a plethora of behavioral and autonomic effects on humans and animals. Some of these effects are the cause of the widespread illicit use of marijuana, while others might be involved in the potential therapeutic use of this drug for the treatment of several neuronal disorders.

The great majority of these effects of THC are mediated by cannabinoid receptor type 1 (CB1), which is abundantly expressed in the central nervous system. The exact anatomical and neuronal substrates of each action, however, were previously unknown.

Using an advanced genetic approach, Krisztina Monory and colleagues at the Johannes Gutenberg University Mainz discovered that specific neuronal subpopulations mediate the distinct effects of THC. Their work is published online this week in the open-access journal PLoS Biology.

In their study, the researchers generated mutant mice lacking CB1 expression in defined neuronal subpopulations but not in others. These mice were treated with THC, and typical effects of the drug on motor behavior, pain, and thermal sensation were scored. Their discovery of the neural substrates underlying specific effects of THC could lead to a refined interpretation of the pharmacological actions of cannabinoids. Moreover, these data might provide the rationale for the development of drugs capable of selectively activating CB1 in specific neuronal subpopulations, thereby better exploiting cannabinoids’ potential therapeutic properties.

Citation: Monory K, Blaudzun H, Massa F, Kaiser N, Lemberger T, et al (2007) Genetic dissection of behavioural and autonomic effects of D9-tetrahydrocannabinol in mice. PLoS Biol 5(10): e269. doi:10.1371/journal.pbio.0050269

Source: Public Library of Science

Explore further: New class of insecticides offers safer, more targeted mosquito control

Related Stories

New study sheds light on painkilling system in brain

Aug 24, 2010

Repeatedly boosting brain levels of one natural painkiller soon shuts down the brain cell receptors that respond to it, so that the painkilling effect is lost, according to a surprising new study led by Scripps Research Institute ...

The surprising effect of cannabis on morphine dependence

Jul 07, 2009

(PhysOrg.com) -- Injections of THC, the active principle of cannabis, eliminate dependence on opiates (morphine, heroin) in rats deprived of their mothers at birth. This has been shown by a study carried out ...

Cannabis compound can help cells

Feb 19, 2009

(PhysOrg.com) -- Cannabis has been used recreationally and for medicinal purposes for centuries, yet its 60 plus active components are only partly understood. Now scientists have discovered how a compound ...

Recommended for you

Scientists discover new 'transformer frog' in Ecuador

10 hours ago

It doesn't turn into Prince Charming, but a new species of frog discovered in Ecuador has earned the nickname "transformer frog" for its ability to change its skin from spiny to smooth in five minutes.

Longer DNA fragments reveal rare species diversity

11 hours ago

A challenge in metagenomics is that the more commonly used sequencing machines generate data in short lengths, while short-read assemblers may not be able to distinguish among multiple occurrences of the ...

Scientists say polar bears won't thrive on land food

11 hours ago

A group of researchers say polar bears forced off melting sea ice will not find enough food to replace their current diet of fat-laden marine mammals such as seals, a conclusion that contradicts studies indicating ...

The vital question: Why is life the way it is?

12 hours ago

The Vital Question: Why is life the way it is? is a new book by Nick Lane that is due out on April 23rd. His question is not one for a static answer but rather one for a series of ever sharper explanations—explanations that a ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.