LIGO Kicks into High Gear for Gravitational-Wave Search with 18-Month Observation Run

Feb 22, 2006

The quest to detect and study gravitational waves with the NSF-funded Laser Interferometer Gravitational-Wave Observatory (LIGO) is now in the fourth month of its first sustained science run since achieving its promised design sensitivity, project personnel announced at the annual meeting of the American Association for the Advancement of Science (AAAS).

Fully operational since 2005, LIGO is a facility for the detection of cosmic gravitational waves and for scientific research using those waves as an astronomical tool for better understanding the cosmos. LIGO operates observatories at Hanford, Washington, and Livingston Parish, Louisiana. The project was designed and is operated by the California Institute of Technology and Massachusetts Institute of Technology, with funding from the National Science Foundation. Research is carried out by the LIGO Scientific Collaboration, a group of 500 scientists at universities around the U.S. and in 8 foreign countries.

At a press breakfast on Sunday, February 21, Michael Turner of the National Science Foundation and Professor Gabriela González of Louisiana State University discussed recent milestones of the LIGO project. These include an update on the current status of LIGO, the current 18-month science run that began in November 2005, and the plan for the next generation of LIGO.

The breakfast is a sponsored networking and information opportunity for reporters, and is supported by the National Science Foundation and LIGO.

During the breakfast, NSF will screen its new video production, titled "Einstein's Messengers," a 20-minute documentary about LIGO. Designed especially for the general public, the documentary examines how LIGO will be able to observe the incredibly tiny ripples in space-time that are gravitational waves, and so open a new window on the universe. Free DVD copies of the documentary will be available for reporters.

According to Jay Marx, the executive director¬-designate of LIGO, earlier science runs have already led to new knowledge about the cosmos, including limits on the deformation of spinning neutron stars; on the amount of gravitational radiation emitted by two merging neutron stars, or black holes; and on remnant gravitation radiation left over from the Big Bang.

Now that the LIGO is sensitive enough to detect changes in distance a mere thousandth the diameter of a proton, Marx adds, the science return should be even greater. Recent results from the Swift satellite pinpointing the location of short gamma-ray bursts (GRBs) have also heightened astronomers' interest in the results from LIGO's current observational run.

The current 18-month science run could lead to even more important discoveries, and if nature is very kind, to the first direct detection of gravitational radiation since Albert Einstein predicted the phenomenon's existence in 1916. "This run will allow us to accumulate substantial amounts of data with the instruments operating at their design sensitivity, and so should produce many new and interesting insights," says Marx, who will also attend the press breakfast.

In addition to serving as a new and unique astrophysical observatory, LIGO will also be used to delve into the fundamental nature of gravity, hence serving both the physics and astronomy communities. Also, depending on the nature of the gravitational background left over from the Big Bang, the project could eventually allow for an observation of the universe in its first few milliseconds.

González is an associate professor of physics at LSU, the closest major research university to the LIGO Livingston facility. She is a founding member of the LIGO Scientific Collaboration, and has been closely involved in the commissioning of the Livingston detector, particularly in matters pertaining to alignment sensing and control.

Her group at LSU has worked on the data-taking science runs, and she is a co-leader of one of the four data analysis groups in the collaboration.

Turner is an assistant director of the NSF and heads the Mathematical and Physical Sciences Directorate.

Source: California Institute of Technology

Explore further: Far from home: Wayward cluster is both tiny and distant

add to favorites email to friend print save as pdf

Related Stories

Evolving robot brains

5 hours ago

Researchers are using the principles of Darwinian evolution to develop robot brains that can navigate mazes, identify and catch falling objects, and work as a group to determine in which order they should ...

Facebook fends off telecom firms' complaints

5 hours ago

Facebook founder Mark Zuckerberg fended off complaints on Monday that the hugely popular social network was getting a free ride out of telecom operators who host its service on smartphones.

Scientists find clues to cancer drug failure

5 hours ago

Cancer patients fear the possibility that one day their cells might start rendering many different chemotherapy regimens ineffective. This phenomenon, called multidrug resistance, leads to tumors that defy ...

Glass coating improves battery performance

5 hours ago

Lithium-sulfur batteries have been a hot topic in battery research because of their ability to produce up to 10 times more energy than conventional batteries, which means they hold great promise for applications ...

Recommended for you

Far from home: Wayward cluster is both tiny and distant

13 hours ago

Like the lost little puppy that wanders too far from home, astronomers have found an unusually small and distant group of stars that seems oddly out of place. The cluster, made of only a handful of stars, ...

Why don't we search for different life?

18 hours ago

If we really want to find life on other worlds, why do we keep looking for life based on carbon and water? Why don't we look for the stuff that's really different?

OSIRIS catches glimpse of Rosetta's shadow

18 hours ago

Several days after Rosetta's close flyby of comet 67P/Churyumov-Gerasimenko on 14 February 2015, images taken on this day by OSIRIS, the scientific imaging system on board, have now been downlinked to Earth. ...

Kamikaze comet loses its head

19 hours ago

Like coins, most comet have both heads and tails. Occasionally, during a close passage of the Sun, a comet's head will be greatly diminished yet still retain a classic cometary outline. Rarely are we left ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.