Simplest circadian clocks operate via orderly phosphate transfers

Oct 04, 2007

Researchers at Harvard University and the Howard Hughes Medical Institute have found that a simple circadian clock found in some bacteria operates by the rhythmic addition and subtraction of phosphate groups at two key locations on a single protein. This phosphate pattern is influenced by two other proteins, driving phosphorylation to oscillate according to a remarkably accurate 24-hour cycle.

Writing this week in the journal Science, the scientists describe what causes a trio of proteins, if placed in a test tube with the common biochemical fuel ATP as a source of phosphate, to function as a minimalist biological clock of sorts, maintaining an accurate circadian rhythm for long periods of time.

The new Harvard work builds upon research reported in 2005 by biologist Takao Kondo and colleagues at Nagoya University in Japan. That team initially reported that a circadian clock could be reconstituted in a test tube solely with three proteins and ATP.

"The most striking feature of this circadian oscillator is its precision," says Erin K. O'Shea, professor of molecular and cellular biology and chemistry and chemical biology in Harvard's Faculty of Arts and Sciences (FAS), director of the FAS Center for Systems Biology, and Howard Hughes Medical Institute investigator. "Even in the absence of external cues -- in total darkness -- these minuscule protein-based clocks can maintain precision to a small fraction of a day over several weeks."

O'Shea, postdoctoral researcher Michael J. Rust, graduate student Joseph S. Markson, and colleagues studied circadian rhythms in cyanobacteria, better known as blue-green algae. These simple organisms, responsible for some 70 percent of the Earth's photosynthesis, devote most of their energies toward just two biological processes: photosynthesis and reproduction.

The scientists scrutinized the activity of three bacterial proteins known as KaiA, KaiB, and KaiC. They found that during the daytime, KaiC is cyclically phosphorylated at two amino acid residues: first at a specific threonine, and then at a specific serine. During nighttime hours, the two amino acids are dephosphorylated in the same order.

The KaiA protein promotes the phosphorylation of KaiC, and KaiB, sensing one of the phosphorylated forms of KaiC, blocks KaiA's activity, creating an intricate biochemical dance that results in a nearly perfect 24-hour oscillation. The researchers' subsequent mathematical analysis confirmed that this distinctive dynamic would, in fact, reproduce a circadian period.

The bacterial proteins studied by O'Shea, Rust, Markson, and colleagues are not known to exist in humans, but the researchers say their findings illuminate general feedback mechanisms that could serve to establish chronological oscillations in a whole host of organisms.

"It's unknown whether such a mechanism is at the core of all circadian clocks," says Rust, a postdoctoral researcher in Harvard's Department of Molecular and Cellular Biology. "It's the simplest chemical oscillator known, and we are looking at it as a possible model for other species."

O'Shea says the 2005 finding by Kondo and colleagues that a cyanobacterial circadian clock could be recreated in a test tube using only three proteins and ATP surprised researchers because it showed that some circadian rhythms are driven solely by protein-protein interactions.

"It demonstrated that circadian clocks can operate independently of DNA and most cellular components, contradicting the previous prevailing theory that an entire organism was likely needed to maintain a clock," she says.

Source: Harvard University

Explore further: Dwindling wind may tip predator-prey balance

add to favorites email to friend print save as pdf

Related Stories

Final pieces to the circadian clock puzzle found

Sep 14, 2014

Researchers at the UNC School of Medicine have discovered how two genes – Period and Cryptochrome – keep the circadian clocks in all human cells in time and in proper rhythm with the 24-hour day, as well ...

Recommended for you

Dwindling wind may tip predator-prey balance

13 hours ago

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Environmental pollutants make worms susceptible to cold

17 hours ago

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

19 hours ago

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 0