Yale scientists bring quantum optics to a microchip

Sep 08, 2004

A report in the journal Nature describes the first experiment in which a single photon is coherently coupled to a single superconducting qubit (quantum bit or "artificial atom"). This represents a new paradigm in which quantum optics experiments can be performed in a micro-chip electrical circuit using microwaves instead of visible photons and lasers. The work is a collaboration of the laboratory of Professor Robert Schoelkopf and the theory group of Professor Steven Girvin in the Departments of Applied Physics and Physics at Yale University.

The Yale researchers have constructed a miniaturized superconducting cavity whose volume is more than one million times smaller than the cavities used in corresponding current atomic physics experiments. The microwave photon is, therefore, "trapped" allowing it to be repeatedly absorbed and reemitted by the 'atom' many times before it escapes the cavity. The 'atom' is a superconducting circuit element containing approximately one billion aluminum atoms acting in concert.

Because of the tiny cavity volume and large 'atom' size, the photon and 'atom' are very strongly coupled together and energy can be rapidly exchanged between them. Under the peculiar rules of quantum mechanics, the state of the system becomes a coherent superposition of two simultaneous possibilities: the energy is either an excitation of the atom, or it is a photon. It is this superposition that was observed in the Yale experiment.

In addition to allowing fundamental tests of quantum mechanics and quantum optics in a completely new format, this new system has many desirable features for a quantum computer. In a quantum computer the bits of information are replaced by qubits (e.g. an atom), which, paradoxically, can harness quantum uncertainty to vastly speed up certain types of calculations. The ability to couple qubits to photons, demonstrated by the Yale group, could allow qubits on a chip to be wired together via a "quantum information bus" carrying single photons.

Source: Yale University

Explore further: See-through, one-atom-thick, carbon electrodes powerful tool to study brain disorders

add to favorites email to friend print save as pdf

Related Stories

Scientists track quantum errors in real time

Jul 14, 2014

(Phys.org) —Scientists at Yale University have demonstrated the ability to track real quantum errors as they occur, a major step in the development of reliable quantum computers. They report their results ...

Progress in the fight against quantum dissipation

Apr 16, 2014

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

How losing information can benefit quantum computing

Nov 24, 2013

Suggesting that quantum computers might benefit from losing some data, physicists at the National Institute of Standards and Technology (NIST) have entangled—linked the quantum properties of—two ions ...

Recommended for you

Energy storage of the future

18 hours ago

Personal electronics such as cell phones and laptops could get a boost from some of the lightest materials in the world.

User comments : 0