Blocking formation of toxic plaques implicated in type 2 diabetes

Sep 10, 2007

Amid growing evidence that the same abnormal clumping of proteins in Alzheimer’s disease also contributes to type-2 diabetes, scientists in New York are reporting discovery of a potent new compound that reduces formation of those so-called amyloid plaques. Their study is scheduled for the Sept. 5 issue of the Journal of the American Chemical Society.

The report cites evidence correlating increases in amyloid formation in the pancreas with increases in severity and rate of progression of type-2 diabetes, which affects almost 20 million Americans and is rapidly rising worldwide. Deposits of the abnormal protein damage and destroy insulin-producing “islet” cells in the pancreas. Researchers have been seeking potential new medicines that block formation of an abnormal, misfolded protein called islet amyloid polypeptide (IAPP), which may play a key role in the cell destruction.

In the new study, Daniel Raleigh, Andisheh Abedini and Fangli Meng found that changing a single amino acid in human IAPP’s structure transformed it from one of the most potent amyloid-forming substances into a powerful inhibitor of amyloid formation. In laboratory studies, they showed that the mutant IAPP significantly reduced the amount of amyloid formed.

n addition to opening the door for better IAPP inhibitors in type-2 diabetes, the findings provide potentially important insights into the formation and treatment of amyloid plaques in Alzheimer’s disease, Parkinson’s disease, and other conditions, the researchers say.

Source: American Chemical Society

Explore further: Video: How did life on Earth begin?

add to favorites email to friend print save as pdf

Related Stories

Research offers new way to target shape-shifting proteins

Aug 28, 2011

(PhysOrg.com) -- A molecule which can stop the formation of long protein strands, known as amyloid fibrils, that cause joint pain in kidney dialysis patients has been identified by researchers at the University ...

Simulating amyloid formation

May 04, 2011

Many neurodegenerative diseases are characterized by proteins that assume an abnormal configuration, which leads to their aggregation and deposition in and around rve cells, causing cell death. This process, ...

Unfolding amyloid secrets

Jan 20, 2011

Scientists from the University of Leeds have made a fundamental step in the search for therapies for amyloid-related diseases such as Alzheimer's, Parkinson's and diabetes mellitus. By pin-pointing the reaction that kick-starts ...

Recommended for you

Chemical biologists find new halogenation enzyme

Sep 15, 2014

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

Sep 15, 2014

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

Sep 15, 2014

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

User comments : 0