XXL Cages: Organometallic lattice with unusually large pores can house gases and ferrocene molecules

Sep 07, 2007

It’s full of holes and yet it holds together: Whether as a place to store gas molecules; for the separation of substances; as sensors, catalysts, and nanoreactors; or materials for optoelectronics, porous crystalline solids with a regular array of defined pores have become indispensable in science and technology.

Organometallic compounds can also form porous structures and have greatly broadened the palette of porous materials, though until now these have been limited to species with very small pores. In the journal Angewandte Chemie, Korean researchers led by Jaheon Kim now report the synthesis and characterization of a mesoporous organometallic lattice with cagelike pores that are 3.9 to 4.7 nm in diameter.

Previously, only a few stable structures made of metal atoms or ions and organic ligands have been made that have larger pores, called mesopores (>3 nm in diameter). Among the reasons for this is the special type of bonding that takes place between a metal and a ligand, known as complex coordination. Large cavities can easily destabilize this type of lattice. Just as difficult as the synthesis of such structures is their characterization at the atomic level.

The Korean researchers have overcome both challenges. Their lattice structures are made of ions of the rare-earth metal terbium and an organic ligand. By using X-ray crystallographic methods, the scientists were also able to precisely determine the structures of both the crystal and the pores.

The use of nitrogen adsorption measurements also allowed them to confirm that there are two types of pore in the structure, some a little bigger, some smaller. When the samples are activated at 160 °C, the specific surface area of the porous crystals increases further, but its sorption ratio does not change. This behavior is also confirmed in adsorption experiments with carbon dioxide.

When irradiated with light, the crystals fluoresce green. They are very thermally stable and hold out well enough in a vacuum to be loaded up by means of a sublimation process with guest molecules that are catalytically active or useful for optoelectronics. The researchers tested this with ferrocene, a molecular “sandwich” with two aromatic five-membered rings acting as the “bread” and an iron atom as the “filling”. With ferrocene guests in its pores, the crystal no longer fluoresces green. Instead, emission from the ferrocene is observed.

The researchers believe that the crystal lattice absorbs the photons like an antenna and passes them on to the ferrocene unit in the form of “energy bundles”. The ferrocene molecule in turn gives off this energy in the form of light. However, its emission is stronger than that given off in the irradiation of ferrocene alone. Systems using this construction principle could be useful for future optoelectronic components such as novel light-emitting diodes.

Citation: Jaheon Kim, Crystal Structure and Guest Uptake of a Mesoporous Metal-Organic Framework Containing Cages of 3.9 and 4.7nm in Diameter, Angewandte Chemie International Edition, doi: 10.1002/anie.200702324

Source: Angewandte Chemie

Explore further: Efficient synthesis of polyurethane raw materials from carbon dioxide

add to favorites email to friend print save as pdf

Related Stories

How the hummingbird achieves its aerobatic feats

1 hour ago

(Phys.org) —The sight of a tiny hummingbird hovering in front of a flower and then darting to another with lightning speed amazes and delights. But it also leaves watchers with a persistent question: How ...

'Mind the gap' between atomically thin materials

2 hours ago

In subway stations around London, the warning to "Mind the Gap" helps commuters keep from stepping into empty space as they leave the train. When it comes to engineering single-layer atomic structures, minding ...

Seychelles poachers go nutty for erotic shaped seed

2 hours ago

Under cover of darkness in the steamy jungles of the Seychelles thieves creep out to harvest the sizeable and valuable nuts of the famous coco de mer palm, and their activities are threatening its long-term ...

Recommended for you

Heat-conducting plastic developed

4 hours ago

The spaghetti-like internal structure of most plastics makes it hard for them to cast away heat, but a University of Michigan research team has made a plastic blend that does so 10 times better than its conventional ...

Electronic switches on the molecular scale

9 hours ago

A molecular electronic switch is a junction created from individual molecules that can alternate between two or more stable states, making the switch act as a conductor or an insulator. These switches show ...

Mimicking photosynthesis with man-made leaves

9 hours ago

Scientists have long been trying to emulate the way in which plants harvest energy from the sun through photosynthesis. Plants are able to absorb photons from even weak sunlight using light antennae made ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.