Skin oil -- ozone interactions worsen air quality in airplanes

Sep 05, 2007

Airline passengers and crews who gripe about poor cabin air quality could have a new culprit to blame: the oils on their skin, hair and clothing. A study in the current issue of ACS’ Environmental Science & Technology suggests interactions between body oils and ozone found in airplane cabins could lead to the formation of chemical byproducts that might worsen nasal irritation, headaches, dry eyes and lips, and other common air traveler complaints.

In simulated flights lasting four hours, American and Danish researchers placed two groups of 16 volunteers in a mockup of an airline cabin and then exposed them to varying levels of ozone and air flow, including levels typically experienced in real flights. Consistently, ozone in the cabin increased production of identifiable chemical byproducts including nonanal and decanal, a pair of aldehyde compounds associated with headaches, nasal irritation and with other symptoms of “sick building” syndrome.

More than half of the byproducts were the result of reactions with skin, hair and clothing, according to Charles Weschler, Ph.D., the study’s lead author, who is with University of Medicine and Dentistry of New Jersey. These oxidative byproducts are produced when ozone reacts with squalene, oleic acid and other compounds in natural skin oils, he said.

“The role of these (by)products in the adverse health effects that have been associated with ozone is, at present, unknown,” Weschler said. “If these oxidation products are demonstrated to be harmful, simple steps can be taken to reduce their production in aircraft and buildings. For instance, installing ozone-destroying catalysts in airplane ventilation systems can help remove most of the ozone from incoming air, he noted.

In 2006, about 750 million people boarded commercial aircraft in the United States, according to the Federal Aviation Administration. At cruising altitude, the atmosphere outside of these aircraft contains very high ozone levels, frequently topping more than 500 parts per billion (ppb). According to FAA regulations, cabin ozone levels should not exceed 250 ppb at any time flying above 32,000 feet or average more than 100 ppb during any 4-hour flight segment that includes cruising at or above 27,000 feet.

Most wide-body planes are equipped with ozone-destroying catalysts in their ventilation systems, according to study co-author William Nazaroff, Ph.D., of the University of California, Berkeley. However, these catalysts are far less common on narrow-body aircraft. As a result, ozone in the cabin air of narrow-body planes can “exceed ozone levels in Washington, D.C., on a smoggy day,” Weschler said.

In fact, the study, which was supported by the FAA and the Danish Technical Research Council, could help scientists better understand the adverse effects of ground-level ozone, an important component of urban and regional air pollution. “Although this work was done in a simulated aircraft, the results certainly have implications beyond that,” Weschler said. “Any time you have a situation with high-occupant densities and elevated concentrations of ozone, the same kind of chemistry is going to occur.”

Source: American Chemical Society

Explore further: Biochemists identify molecular structures which allow the immune system to tell friend from foe

add to favorites email to friend print save as pdf

Related Stories

Obstacles to a revolution in air technology

Oct 13, 2014

When in 1873 Jules Verne published his novel of planet-trotting high adventure, the world was on the verge of an explosion in global travel. New trans-continental railways and the Suez canal promised an increas ...

Major air pollution studies to converge over Denver

Jul 04, 2014

Two NASA aircraft are participating in field campaigns beginning this month in Colorado that will probe the factors leading to unhealthy air quality conditions and improve the ability to diagnose air quality ...

Recommended for you

Heat-conducting plastic developed

16 hours ago

The spaghetti-like internal structure of most plastics makes it hard for them to cast away heat, but a University of Michigan research team has made a plastic blend that does so 10 times better than its conventional ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.