Nano Dandelions: Bundles of cysteine-lead nanowires spread into highly oriented structures

Sep 03, 2007

Under an electron microscope they look like dandelions. In the journal Angewandte Chemie, Xiao-Fang Shen and Xiu-Ping Yan explain their nanoscopic bouquets: They consist of spread-out bundles of nanowires made of lead and the amino acid l-cysteine. The Chinese researchers have discovered a new, cost-effective method by which ordered nanostructures can be produced on a large scale, at room temperature, and under atmospheric pressure.

The properties of nanomaterials are not determined exclusively by their chemical composition; other characteristics such as structure and morphology, as well as the form, size, and spatial distribution of the individual particles, also play a role.

It is equally important for the construction of future nanocomponents that nanomaterials can be produced with controlled “architecture”. For example, one-dimensional nanoobjects, known as nanowires, are needed for the (opto)electronics of the future and for the construction of superordinate structures.

Thanks to their specific structures and fascinating penchant for self-assembly, biomaterials make particularly interesting “molds” for the production of defined inorganic nanostructures. In particular, the amino acid cysteine easily forms coordination compounds with inorganic cations and metals.

The research team at Nankai University started with an aqueous solution of cysteine and lead acetate. At room temperature and under certain conditions, spindly bundles of nanowires form. These bundles spread out to form dandelion-like structures with a highly oriented morphology.

When heated under hydrothermal conditions, these structures decompose. Depending on the reaction conditions, hierarchical lead sulfide microstructures are formed with various attractive shapes, including spherical, needle-like, and different flower-like structures. Lead sulfide is an important semiconductor.

“Our new process enables the simple, controlled synthesis of nanowires and three-dimensional lead sulfide microstructures,” summarizes Yan. “In addition, we expect to gain new insights into the fundamental processes involved in mineralization, the transformation of bioorganic nano- and microstructures into inorganic structures. This process also occurs in living organisms, in which it plays an important role.”

Citation: Xiu-Ping Yan, Facile Shape-Controlled Synthesis of Well-Aligned Nanowire Architectures in Binary Aqueous Solution, Angewandte Chemie International Edition, doi: 10.1002/anie.200702451

Source: Angewandte Chemie

Explore further: Oat breakfast cereals may contain a common mold-related toxin

add to favorites email to friend print save as pdf

Related Stories

Precision growth of light-emitting nanowires

Feb 06, 2015

A novel approach to growing nanowires promises a new means of control over their light-emitting and electronic properties. In a recent issue of Nano Letters, scientists from the U.S. Department of Energy ...

The quest for efficiency in thermoelectric nanowires

Feb 02, 2015

Efficiency is big in the tiny world of thermoelectric nanowires. Researchers at Sandia National Laboratories say better materials and manufacturing techniques for the nanowires could allow carmakers to harvest ...

Recommended for you

Researchers bring clean energy a step closer

12 hours ago

For nearly half a century, scientists have been trying to replace precious metal catalysts in fuel cells. Now, for the first time, researchers at Case Western Reserve University have shown that an inexpensive metal-free catalyst ...

The construction of ordered nanostructures from benzene

17 hours ago

A way to link benzene rings together in a highly ordered three-dimensional helical structure using a straightforward polymerization procedure has been discovered by researchers from RIKEN Center for Sustainable ...

Superatomic nickel core and unusual molecular reactivity

17 hours ago

A superatom is a combination of two or more atoms that form a stable structural fragment and possess unique physical and chemical properties. Systems, that contain superatoms, open a number of amazing possibilities ...

Oat breakfast cereals may contain a common mold-related toxin

Feb 25, 2015

Oats are often touted for boosting heart health, but scientists warn that the grain and its products might need closer monitoring for potential mold contamination. They report in ACS' Journal of Agricultural and Food Chemistry that s ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.