Nano Dandelions: Bundles of cysteine-lead nanowires spread into highly oriented structures

Sep 03, 2007

Under an electron microscope they look like dandelions. In the journal Angewandte Chemie, Xiao-Fang Shen and Xiu-Ping Yan explain their nanoscopic bouquets: They consist of spread-out bundles of nanowires made of lead and the amino acid l-cysteine. The Chinese researchers have discovered a new, cost-effective method by which ordered nanostructures can be produced on a large scale, at room temperature, and under atmospheric pressure.

The properties of nanomaterials are not determined exclusively by their chemical composition; other characteristics such as structure and morphology, as well as the form, size, and spatial distribution of the individual particles, also play a role.

It is equally important for the construction of future nanocomponents that nanomaterials can be produced with controlled “architecture”. For example, one-dimensional nanoobjects, known as nanowires, are needed for the (opto)electronics of the future and for the construction of superordinate structures.

Thanks to their specific structures and fascinating penchant for self-assembly, biomaterials make particularly interesting “molds” for the production of defined inorganic nanostructures. In particular, the amino acid cysteine easily forms coordination compounds with inorganic cations and metals.

The research team at Nankai University started with an aqueous solution of cysteine and lead acetate. At room temperature and under certain conditions, spindly bundles of nanowires form. These bundles spread out to form dandelion-like structures with a highly oriented morphology.

When heated under hydrothermal conditions, these structures decompose. Depending on the reaction conditions, hierarchical lead sulfide microstructures are formed with various attractive shapes, including spherical, needle-like, and different flower-like structures. Lead sulfide is an important semiconductor.

“Our new process enables the simple, controlled synthesis of nanowires and three-dimensional lead sulfide microstructures,” summarizes Yan. “In addition, we expect to gain new insights into the fundamental processes involved in mineralization, the transformation of bioorganic nano- and microstructures into inorganic structures. This process also occurs in living organisms, in which it plays an important role.”

Citation: Xiu-Ping Yan, Facile Shape-Controlled Synthesis of Well-Aligned Nanowire Architectures in Binary Aqueous Solution, Angewandte Chemie International Edition, doi: 10.1002/anie.200702451

Source: Angewandte Chemie

Explore further: Dead feeder cells support stem cell growth

Related Stories

Twitter moves to stem violent threats, abuse

30 minutes ago

Twitter on Tuesday began implementing a new policy aimed at curbing use of the social network to incite violence, and to crack down on abuse and harassment on the service.

NATO to hold major cyber defense drill in Estonia

32 minutes ago

About 400 computer experts will participate in a major cybersecurity drill in Estonia this week as part of NATO's efforts to upgrade its capability to counter potentially debilitating hacker attacks, organizers said Tuesday.

Virtual telescope expands to see black holes

36 minutes ago

Astronomers building an Earth-size virtual telescope capable of photographing the event horizon of the black hole at the center of our Milky Way have extended their instrument to the bottom of the Earth—the ...

Certain interactive tools click with web users

37 minutes ago

Before web developers add the newest bells and the latest whistles to their website designs, a team of researchers suggests they zoom in on the tools that click with the right users and for the right tasks.

Printing silicon on paper, with lasers

56 minutes ago

In seeking to develop the next generation of micro-electronic transistors, researchers have long sought to find the next best thing to replace silicon. To this end, a wealth of recent research into fully ...

Recommended for you

Dead feeder cells support stem cell growth

Apr 24, 2015

Stem cells naturally cling to feeder cells as they grow in petri dishes. Scientists have thought for years that this attachment occurs because feeder cells serve as a support system, providing stems cells ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.