Better life support for artificial liver cells

Aug 23, 2007

Researchers at Ohio State University are developing technology for keeping liver cells alive and functioning normally inside bioartificial liver-assist devices (BLADs).

Such devices enable people who are suffering from acute liver failure to survive while their own liver cells regenerate, or until they receive a liver transplant. The person's blood or plasma circulates through the device. Inside, living cells -- usually pig or human liver cells -- perform normal liver functions.

For those liver cells to keep working, they need oxygen. Andre Palmer, an associate professor of chemical and biomolecular engineering at Ohio State, and his team are developing innovative ways to chemically modify and package hemoglobin -- the blood molecule in red blood cells that transports oxygen -- to deliver oxygen to liver cells in just the right way.

Palmer presented the project's preliminary results on August 23, 2007, at the American Chemical Society meeting in Boston .

In the body, liver cells are naturally exposed to a range of oxygen concentrations, called an oxygen gradient. But reproducing that natural gradient inside a BLAD is difficult.

"If you don't recreate that oxygen gradient and the total amount of oxygen normally delivered, the liver cells in the BLAD won't function as well as they do in the body," Palmer said.

His solution has been to create different kinds of hemoglobin. One he seals inside microscopic polymer capsules; oxygen bound to the hemoglobin diffuses through the polymer over time to reach liver cells. Another is a type of hemoglobin-based oxygen carrier, which consists of long chains of hemoglobin molecules wound into balls that can then transport oxygen to liver cells.

The use of this technology with patients would require clinical trials, which Palmer admits are years away. For now, he is working to prove that he can adjust the oxygen gradient and the amount of oxygen his hemoglobins can transport to liver cells housed in a BLAD.

"We've found that by using different types of hemoglobin-based oxygen carriers with different oxygen affinities and tuning the oxygen concentration, we can recreate natural oxygen gradients," Palmer said.

He began developing this technology while at the University of Notre Dame, and since 2006 has been continuing the work at Ohio State.

Though computer simulations had shown Palmer and his team that they could reproduce a natural oxygen gradient in principle, they have now conducted experiments on actual liver cells in the laboratory, and shown that they can do it in reality.

Source: Ohio State University

Explore further: A refined approach to proteins at low resolution

add to favorites email to friend print save as pdf

Related Stories

Introducing the multi-tasking nanoparticle

Aug 26, 2014

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

US zoo cites liver disease in baby panda's death

Oct 11, 2012

Veterinary pathologists on Thursday blamed liver disease brought on by insufficient oxygen for the sudden death of a six-day-old baby panda born at the National Zoo in Washington last month.

Good housekeeping maintains a healthy liver

Oct 17, 2011

Differences in the levels of two key metabolic enzymes may explain why some people are more susceptible to liver damage, according to a study in the October 17 issue of the Journal of Cell Biology.

Recommended for you

A refined approach to proteins at low resolution

Sep 19, 2014

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0