Researcher finds that on water's surface, nitric acid is not so tough

Aug 20, 2007

Nitric acid is a notoriously strong and chemically destructive compound found in water on earth and in our atmosphere. However, a team of researchers have found that its punch is much weaker when it sits on the top of a water surface.

The discovery of the weaker and more highly exposed nature of nitric acid on the surface of water requires us to re-evaluate how we think about its reactive role in our world, said Geraldine Richmond, the Richard M. and Patricia H. Noyes Professor of Chemistry at the University of Oregon.

Richmond, who was named a Guggenheim Fellow for 2007 earlier this year, described her lab’s exploratory research involving chemical reactions at the surface of water in a talk today at the 234th national meeting of the American Chemical Society in Boston. Her address was one of six scheduled talks on “Recent Advances in Studies of Molecular Processes at Interfaces.”

Richmond is the principal investigator on this and many recent papers that examine unique properties of water surfaces using a combination of computer modeling and laser based experiments.

Nitric acid, a commonly used strong acid in the laboratory, is most notable for its widespread use in the manufacture of fertilizers and explosives. In our environment it is an important player in the atmosphere, where it concentrates in clouds and is one of the primary components of acid rain. Once dissolved in water, its reactive acidic and oxidizing properties can become unleashed. The water causes it to break apart into hydrogen and nitrate ions, creating a highly acidic solution – hence its designation as a “strong acid” – that is very reactive to plants, soils and other matter. At high acid concentrations it can react explosively with other compounds, often releasing highly toxic gases.

Richmond and colleagues have found that when nitric acid swims to the top of a water surface, it tends to tread water – with part of its molecular structure in the air and the rest surrounded by water. Under these conditions they find that it is much less likely to dissociate into its ionic parts – giving the surface of nitric acid solutions very different reactive properties than its well-known reactive and acidic behavior in the bulk of the acid solution.

“Our combined laser experiments and computer simulations provide a rich picture of how nitric acid behaves on a water surface, the way it dances around on the top layer of the water surface in a way that significantly reduces its ability to shed its acidic hydrogen compared to when it is submerged in the liquid,” Richmond said. “Hydrogen bonding to surface solvating water molecules plays a key role in this altered molecular behavior.”

The exposed nature of nitric acid at the surface, Richmond said, makes it more readily available for reaction with immediate surroundings. But as a consequence of this exposure, it acts as a much weaker acid. The results have important implications for understanding the role of nitric acid in our environment, particularly in the many instances where the chemistry in our atmosphere occurs on the surface of nitric acid containing droplets and particulates.

Source: University of Oregon

Explore further: Quantum mechanical calculations reveal the hidden states of enzyme active sites

add to favorites email to friend print save as pdf

Related Stories

Simulation predicts epidermal responses to compounds

Nov 18, 2014

Skin is the body's largest organ. It is a protective barrier, keeping microbes out and moisture in. It also regulates temperature, enables sensation, and makes vitamin D. But researchers don't fully understand ...

Small volcanic eruptions could be slowing global warming

Nov 18, 2014

Small volcanic eruptions might eject more of an atmosphere-cooling gas into Earth's upper atmosphere than previously thought, potentially contributing to the recent slowdown in global warming, according to ...

No signals heard from comet lander Saturday

Nov 15, 2014

The European Space Agency received no signals from the Philae lander Saturday morning during a scheduled effort to establish communication, the mission chief said.

Space agency says Philae completes primary mission

Nov 15, 2014

The pioneering lander Philae completed its primary mission of exploring the comet's surface and returned plenty of data before depleted batteries forced it to go silent, the European Space Agency said Saturday.

Five questions about the historic comet landing

Nov 12, 2014

The European Space Agency has achieved a historic first—landing a washing machine-sized spacecraft on a comet speeding through our solar system at 41,000 mph (66,000 kph). Here are answers to five questio ...

Recommended for you

Geologists cite hair as 'human provenance tool'

6 hours ago

Scott Samson, professor of Earth sciences and a faculty fellow of the Forensic and National Security Sciences Institute (FNSSI), is leading a multiyear study of strontium (Sr), a metallic element found in ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.