What, oh, what are those actinides doing?

Aug 20, 2007
What, oh, what are those actinides doing?
Researchers are discovering how actinides such as uranium in solution interact with magnetite and other mineral surfaces. Credit: Pacific Northwest National Laboratory

Researchers at Pacific Northwest National Laboratory are uniting theory, computation and experiment to discover exactly how heavy elements, such as uranium and technetium, interact in their environment.

As part of that effort, scientists have combined sensitive experimental measurements with fi rst principle electronic structure calculations to measure, and to really understand, the structural and bonding parameters of uranyl, the most common oxidation state of uranium in systems containing water.

The insights were achieved by PNNL scientist Bert de Jong and associates Gary Groenewold of Idaho National Laboratory and Michael Van Stipdonk of Wichita State University, employing the supercomputing resources of the William R. Wiley Environmental Molecular Sciences Laboratory, a Department of Energy national scientifi c user facility located at PNNL.

The large number and behavior of electrons in heavy elements makes most of them extremely diffi cult to study. De Jong said that advancements in computing power and theory are enabling computational actinide chemistry to contribute significantly to the understanding and interpretation of experimental chemistry data, as well as to predicting the chemical and physical properties of heavy transition metal, lanthanide and actinide complexes.

“Now we can make sure we get the right answer for the right reason,” de Jong said, adding that results obtained from the calculations are an invaluable supplement to current, very expensive and often hazardous experimental studies.

Researchers are discovering how actinides such as uranium in solution interact with magnetite and other mineral surfaces.

Discoveries made using the new capabilities available to the growing field of computational actinide chemistry could have wide impact, from radioactive waste and cleanup challenges to the design and operation of future nuclear facilities.

Bert De Jong will make his presentation at the 234th American Chemical Society National Meeting in Boston.

Source: DOE/Pacific Northwest National Laboratory

Explore further: A refined approach to proteins at low resolution

add to favorites email to friend print save as pdf

Related Stories

Staying cool in the nanoelectric universe by getting hot

Jan 22, 2014

(Phys.org) —As smartphones, tablets and other gadgets become smaller and more sophisticated, the heat they generate while in use increases. This is a growing problem because it can cause the electronics ...

Recommended for you

A refined approach to proteins at low resolution

19 hours ago

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

21 hours ago

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

Smartgels are thicker than water

22 hours ago

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0