Declining Snowpack in Rockies Cools CO2, Slows Gas Release from Winter Forest Soils

Feb 08, 2006
Instruments on a tower at NSF's Niwot Ridge LTER site in Colo. measure carbon dioxide.
Instruments on a tower at NSF's Niwot Ridge LTER site in Colo. measure carbon dioxide. Credit: CU-Boulder

A decrease in Rocky Mountain snowfall has slowed the release of heat-trapping carbon dioxide gas from forest soils into the atmosphere during the dead of winter, according to results of a new study.

Scientist Russell Monson of the University of Colorado at Boulder and his colleagues found that lack of snow has decreased the winter insulation of soils, cooling the soils and slowing the metabolism of soil microbes. Snow acts as an insulator, and without it, soil temperatures and microbial metabolism cool down, said Monson.

The deeper the snow pack, "the more CO2 we once observed leaving the forest," Monson said. "This forced us to look at the winter period more closely than before." The scientists found that the reverse was also true: little snow pack, less CO2 released. Microbes usually release large amounts of CO2 into the atmosphere, but are no longer doing so.

But the discovery of what Monson called a "serendipitous effect" of reduced snowfall--slowing the amount of greenhouse gas released into the atmosphere--does little to bolster the overall environmental health picture of the West's mountain forests in recent years.

"This is a small amount of good news in a large cloud of bad news," said Monson, lead author of a paper that appears in this week's issue of the journal Nature. "While winter CO2 emissions from forest soils have slowed, the lack of winter moisture is stressing the trees during the spring and summer and inhibiting the absorption of much larger amounts of CO2 during their growing season."

The study was conducted at the National Science Foundation (NSF)'s Niwot Ridge Long-Term Ecological Research (LTER) site west of Boulder. The site is one of 26 such sites, and is home to one of several dozen AmeriFlux installations, which measure CO2 activity. Niwot Ridge has five towers studded with these climate instruments.

The researchers used the 100-foot-high towers--placed at an altitude of 10,000 feet in a forest of lodge pole pine, sub-alpine fir and Englemann spruce--to measure CO2 , water, and energy exchanges between the biosphere and atmosphere. They used the instruments to zero in on swirling winds drifting over the rugged terrain, and took millions of individual CO2 readings from 1998 to 2004.

"Measurement of CO2 in mountain forests like those at Niwot Ridge is critical to understanding the bigger environmental picture," said Henry Gholz, director of NSF's LTER program. "To really understand how forests, soil microbes and the atmosphere interact, we need information from monitoring systems like this one."

Recent studies have shown that some mountain ranges in Europe and in the Western United States, including parts of the Rocky Mountains and the Sierra Nevada, have experienced decreases of 50 to 75 percent in amount of snowfall in recent decades. The declining snow pack trend correlates with rising temperatures, said Monson.

During several recent winters, decreased snow pack has left trees without moisture for extended periods during spring. "Trees have not had the snow melt moisture that usually tides them over until the summer rains begin in late July and August," said Monson.

The environmental stress from lack of moisture inhibits the ability of trees to take up CO2 in the summer, and makes them more susceptible to threats like insect infestations, diseases and forest fires, the researchers found.

Co-authors of the paper include David Lipson of San Diego State University, Sean Burns, Mark Williams and Steven Schmidt of CU-Boulder, and Andrew Turnipseed and Anthony Delany of the National Center for Atmospheric Research.

Source: NSF

Explore further: NKorea launch pad expansion 'nearing completion'

add to favorites email to friend print save as pdf

Related Stories

Permafrost thaw exacerbates climate change

Mar 21, 2014

The climate is warming in the arctic at twice the rate of the rest of the globe creating a longer growing season and increased plant growth, which captures atmospheric carbon, and thawing permafrost, which ...

Ice-free Arctic may be in our future, says research

May 09, 2013

Analyses of the longest continental sediment core ever collected in the Arctic, recently completed by an international team led by Julie Brigham-Grette of the University of Massachusetts Amherst, provide ...

Recommended for you

Amazing raw Cassini images from this week

10 hours ago

When Saturn is at its closest to Earth, it's three-quarters of a billion miles away—or more than a billion kilometers! That makes these raw images from the ringed planet all the more remarkable.

Europe launches two navigation satellites

10 hours ago

Two satellites for Europe's rival to GPS were lifted into space on Friday to boost the Galileo constellation to six orbiters of a final 30, the European Space Agency (ESA) said.

SpaceX gets 10-year tax exemption for Texas site

11 hours ago

Cameron County commissioners have agreed to waive 10 years of county taxes as part of an agreement bringing the world's first commercial site for orbital rocket launches to the southernmost tip of Texas.

Spectacular supernova's mysteries revealed

11 hours ago

(Phys.org) —New research by a team of UK and European-based astronomers is helping to solve the mystery of what caused a spectacular supernova in a galaxy 11 million light years away, seen earlier this ...

Supernova seen in two lights

12 hours ago

(Phys.org) —The destructive results of a mighty supernova explosion reveal themselves in a delicate blend of infrared and X-ray light, as seen in this image from NASA's Spitzer Space Telescope and Chandra ...

User comments : 0