Robot assisted surgery more accurate than conventional surgery

Feb 08, 2006

A new study from Imperial College London shows that robot assisted knee surgery is significantly more accurate than conventional surgery.

The team of surgeons tested whether Acrobot, a robotic assistant, could improve surgical outcomes for patients undergoing partial knee replacement. Acrobot works by helping the surgeon to line up the replacement knee parts with the existing bones.

The surgeons looked at 27 patients undergoing unicompartmental knee replacement. The patients were separated into two groups as part of a randomised controlled trial, with 14 having conventional surgery, and the remaining 13 having robot assisted surgery.

Although the operations took a few minutes longer using the robotic assistant, the replacement knee parts were more accurately lined up than in conventional surgery. All of the robotically assisted operations lined up the bones to within two degrees of the planned position, but only 40 percent of the conventionally performed cases achieved this level of accuracy.

The team found there were no additional side effects from using robot assisted surgery, and recovery from surgery was quicker in most cases.

Professor Justin Cobb, from Imperial College London, who led the research team, said: "These robots are designed to hold the surgeon's hand in the operating theatre, not take over the operation. This study shows they can be an enormous help, preventing surgeons from making mistakes. More importantly, by showing how the increased accuracy makes a difference to how well a knee works after surgery, we will be able to develop a new generation of less invasive procedures without the risks of error, providing faster recovery and better functional outcomes for patients."

The study involved both surgeons and engineers from Imperial College, with medical robotics engineers designing the Acrobot prototype, and surgeons testing it.

Professor Cobb added: "This study could have important implications for not just surgery, but also for health economics. By improving the accuracy of surgery, and ultimately improving the outcome for patients, we can make sure the knee replacements work better and last longer, preventing the need for additional surgery."

Source: Imperial College London

Explore further: Researcher figures out how sharks manage to act like math geniuses

add to favorites email to friend print save as pdf

Related Stories

Knee-deep sensing

Aug 19, 2014

A new, non-invasive technique to track the motion of knee bones in 3D with a very high precision has been presented by researchers in Australia. By employing a single-element ultrasound sensor and a fast ...

Materials scientists turn to collagen

Jun 05, 2014

(Phys.org) —Miniature scaffolds made from collagen – the 'glue' that holds our bodies together – are being used to heal damaged joints, and could be used to develop new cancer therapies or help repair ...

A smart prosthetic knee with in-vivo diagnoses

Apr 22, 2014

The task was to develop intelligent prosthetic joints that, via sensors, are capable of detecting early failure long before a patient suffers. EPFL researchers have taken up the challenge.

Social media tools can boost productivity

Aug 14, 2012

In this digital age, U.S. physicians still send and receive some 15 billion faxes a year. But not Dr. Howard Luks, chief of sports medicine and knee replacements at Westchester Medical Center in Valhalla, N.Y.

Recommended for you

Entrepreneurs aren't overconfident gamblers

7 hours ago

Leaving one's job to become an entrepreneur is inarguably risky. But it may not be the fear of risk that makes entrepreneurs more determined to succeed. A new study finds entrepreneurs are also concerned about what they might ...

New branch added to European family tree

9 hours ago

The setting: Europe, about 7,500 years ago. Agriculture was sweeping in from the Near East, bringing early farmers into contact with hunter-gatherers who had already been living in Europe for tens of thousands ...

User comments : 0