Nanocoatings: A bathroom that cleans itself

Feb 07, 2006
bathroom

Cleaning bathrooms may become a thing of the past with new coatings that will do the job for you. Researchers at the University of New South Wales are developing new coatings they hope will be used for self-cleaning surfaces in hospitals and the home.

Led by Professor Rose Amal and Professor Michael Brungs of the ARC Centre for Functional Nanomaterials, a research team is studying tiny particles of titanium dioxide currently used on outdoor surfaces such as self-cleaning windows.

The particles work by absorbing ultraviolet light below a certain wavelength, exciting electrons and giving the particles an oxidising quality stronger than any commercial bleach.

These nanoparticles then kill microbes and break down organic compounds. And because surfaces coated with titanium dioxide have another property called 'superhydrophilicity' -- meaning droplets do not form -- water runs straight off the surface, washing as it goes.

Presently, titanium dioxide can only be activated by the UVA present in sunlight. But the UNSW team is working on ways to activate titanium dioxide with indoor light.

The team is modifying titanium dioxide nanoparticles with other elements such as iron and nitrogen so they can absorb light at longer wavelengths.

Lab trials show that glass coated with the new nanoparticles can be activated by visible light from a lamp to kill Escherchia coli.

"If you've got this on tiles or shower screens you don't need so many chemical agents," says Professor Amal.

So far the team has been working at laboratory scale. "It's probably a year before we can talk to industry and test outside the lab," says Professor Amal.

Source: University of New South Wales

Explore further: Making graphene in your kitchen

add to favorites email to friend print save as pdf

Related Stories

Tiny step edges, big step for surface science

Apr 09, 2014

An interesting effect could help build better solar cells and create better chemical catalysts: If a titanium oxide surface is completely flat, the electrons inside the material can move freely. But if there ...

The promise and peril of nanotechnology

Mar 26, 2014

Scientists at Northwestern University have found a way to detect metastatic breast cancer by arranging strands of DNA into spherical shapes and using them to cover a tiny particle of gold, creating a "nano-flare" ...

A promising new system for cheaper drug preparation

Feb 13, 2014

Researchers at the Institute of Chemical Technology (ITQ), a joint centre of the Universitat Politècnica de València and the Spanish National Research Council (CSIC), and the Delft University of Technology (Netherlands) ...

Recommended for you

Making graphene in your kitchen

4 hours ago

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.