Nanocoatings: A bathroom that cleans itself

Feb 07, 2006
bathroom

Cleaning bathrooms may become a thing of the past with new coatings that will do the job for you. Researchers at the University of New South Wales are developing new coatings they hope will be used for self-cleaning surfaces in hospitals and the home.

Led by Professor Rose Amal and Professor Michael Brungs of the ARC Centre for Functional Nanomaterials, a research team is studying tiny particles of titanium dioxide currently used on outdoor surfaces such as self-cleaning windows.

The particles work by absorbing ultraviolet light below a certain wavelength, exciting electrons and giving the particles an oxidising quality stronger than any commercial bleach.

These nanoparticles then kill microbes and break down organic compounds. And because surfaces coated with titanium dioxide have another property called 'superhydrophilicity' -- meaning droplets do not form -- water runs straight off the surface, washing as it goes.

Presently, titanium dioxide can only be activated by the UVA present in sunlight. But the UNSW team is working on ways to activate titanium dioxide with indoor light.

The team is modifying titanium dioxide nanoparticles with other elements such as iron and nitrogen so they can absorb light at longer wavelengths.

Lab trials show that glass coated with the new nanoparticles can be activated by visible light from a lamp to kill Escherchia coli.

"If you've got this on tiles or shower screens you don't need so many chemical agents," says Professor Amal.

So far the team has been working at laboratory scale. "It's probably a year before we can talk to industry and test outside the lab," says Professor Amal.

Source: University of New South Wales

Explore further: Nano engineering advances bone-forming material

add to favorites email to friend print save as pdf

Related Stories

A tree may have the answers to renewable energy

Jul 23, 2014

Through an energy conversion process that mimics that of a tree, a University of Wisconsin-Madison materials scientist is making strides in renewable energy technologies for producing hydrogen.

A new stable and cost-cutting type of perovskite solar cell

Jul 17, 2014

Perovskite solar cells show tremendous promise in propelling solar power into the marketplace. The cells use a hole-transportation layer, which promotes the efficient movement of electrical current after exposure to sunlight. ...

Recommended for you

'Small' transformation yields big changes

Sep 15, 2014

An interdisciplinary team of researchers led by Northeastern University has developed a novel method for controllably constructing precise inter-nanotube junctions and a variety of nanocarbon structures in ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

User comments : 0