Genomics study provides insight into the evolution of unique human traits

Jul 30, 2007

Today, researchers from the University of Colorado Health Sciences Center, along with colleagues from Stanford University, report the results of a large-scale, genome-wide study to investigate gene copy number differences among ten primate species, including humans.

The study provides an overview of genes and gene families that have undergone major copy number expansions and contractions in different primate lineages spanning approximately 60 million years of evolutionary time. In the report, which appears online in Genome Research (www.genome.org), the scientists speculate how unique, lineage-specific gene copy number expansions and contractions in humans may underlie traits such as endurance running, higher cognitive function, and susceptibility genetic disease.

Primates first appeared on earth approximately 90 million years ago, and today, about 300 different species of primates exist. “One of the main genomic driving forces in primate evolution is gene duplication,” explains Dr. James Sikela, Professor at the University of Colorado. “To our knowledge, this study is the most comprehensive assessment of gene copy number variation across human and non-human primate species so far.”

To survey the differences in gene copy number among these species, Sikela and colleagues used DNA microarrays containing over 24,000 human genes to perform comparative genomic hybridization experiments. They compared DNA samples from humans to those of nine other primate species: chimpanzee, gorilla, bonobo, orangutan, gibbon, macaque, baboon, marmoset, and lemur. This allowed them to identify specific genes and gene families that, through evolutionary time, have undergone lineage-specific copy number gains and losses.

The authors of the report suggest that “many of the genes identified are likely to be important to lineage-specific traits found in humans and in the other primate lineages surveyed.” To illustrate this potential, the scientists highlighted several gene families that exhibited striking lineage-specific differences. In particular, the human lineage-specific copy number expansion of a gene called AQP7 could explain why humans have evolved the capacity for endurance running. AQP7, or aquaporin 7, plays a role in transporting water and glycerol across membranes. Therefore, it may facilitate the mobilization of glycogen (energy) stores during long periods of intense exercise; it may also play a role in dissipating excess heat through sweating.

The scientists also found dramatic gene copy number differences potentially associated with cognition, reproduction, immune function, and susceptibility to genetic disease.

Source: Cold Spring Harbor Laboratory

Explore further: Genetic basis of color diversity in coral reefs discovered

add to favorites email to friend print save as pdf

Related Stories

NHL sends GoPro cameras onto the ice

3 hours ago

Ice hockey fans will get a new perspective on the fast-moving game when National Hockey League players don GoPro cameras, starting with this weekend's all-star fixture.

Recommended for you

A rare glimpse at the elusive saharan cheetah

9 hours ago

Research by scientists and conservationists from the Wildlife Conservation Society, the Zoological Society of London, and other groups published today in PLOS ONE shows that critically endangered Saharan cheeta ...

In a role reversal, RNAs proofread themselves

10 hours ago

Building a protein is a lot like a game of telephone: information is passed along from one messenger to another, creating the potential for errors every step of the way. There are separate, specialized enzymatic ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.