Isoprene emission from plants -- a volatile answer to heat stress

Jul 26, 2007

Isoprene is a hydrocarbon volatile compound emitted in high quantities by many woody plant species, with significant impact on atmospheric chemistry. The Australian Blue Mountains and the Blue Ridge Mountains in the Eastern United States are so called because of the spectral properties of the huge amounts of isoprenes emitted from the trees growing there.

Although a positive correlation has been observed between leaf temperature and isoprene emission in plants, the physiological role of isoprene emission, which is clearly quite costly to the plant, is still under vigorous debate.

One of the most popular hypotheses suggests that isoprene protects the metabolic processes in the leaf, in particular photosynthesis (the process by which plants use light energy to fix CO2 and produce their own “food”), against thermal stress.

To test this hypothesis, scientists Katja Behnke and Jörg-Peter Schnitzler from the Institute for Meteorology and Climate Research of the Research Centre Karlsruhe in Garmisch-Partenkirchen in Germany, together with colleagues from the Universities of Braunschweig and Göttingen, also in Germany, and British Columbia, in Canada, recently applied genetic engineering techniques to obtain transgenic Grey poplar (Populus x canescens) trees with decreased isoprene emission, and examined their tolerance to heat. Their findings have been published in The Plant Journal.

Behnke et al. engineered such poplar trees by suppressing the expression of the gene encoding isoprene synthase (ISPS), the enzyme producing isoprene, by RNA interference (RNAi). They then subjected these trees to transient heat phases of 38-42°C, each followed by phases of recovery at 30°C, and measured the performance of photosynthesis.

In these experiments, Behnke et al. observed that photosynthesis in trees that no longer emitted isoprenes was much less efficient under such repeated “heat shocks” (a situation that is similar to what happens in nature, where temperatures around the leaves often oscillate, with short heat spikes). Thus, their results clearly indicate that isoprenes have an important role in protecting the leaves from the harmful effects of high ambient temperature.

How does isoprene confer heat tolerance? Does isoprene act as an antioxidant due to its chemical reactivity? And more generally: Is this effect of significance under natural conditions for poplar and other isoprene-emitting species" The researchers aim to analyse the biophysical and biochemical mechanisms of heat effects on photosynthesis and chloroplasts, and future long-term field trials will test whether the isoprene effect represents a positive adaptive trait for isoprene-producing species.

Source: Blackwell Publishing Ltd.

Explore further: Battling superbugs with gene-editing system

add to favorites email to friend print save as pdf

Related Stories

Missing link of cloud formation

Aug 11, 2009

The discovery of an unknown hitherto chemical compound in the atmosphere may help to explain how and when clouds are formed. The discovery of the so called dihydroxyepoxides (an aerosol-precursor), is reported ...

Recommended for you

Battling superbugs with gene-editing system

9 hours ago

In recent years, new strains of bacteria have emerged that resist even the most powerful antibiotics. Each year, these superbugs, including drug-resistant forms of tuberculosis and staphylococcus, infect ...

Dwindling wind may tip predator-prey balance

Sep 19, 2014

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

Sep 19, 2014

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 0