Fruit fly research may 'clean up' conventional impressions of biology

Jul 18, 2007

The metamorphosis of biology into a science offering numerically precise descriptions of nature has taken a leap forward with a Princeton team's elucidation of a key step in the development of fruit fly embryos -- discoveries that could change how scientists think not just about flies, but about life in general.

While biologists have long known that the structure of adult animals follows a blueprint laid out in the early stages of embryonic development, classical biological experiments have provided only isolated "snapshots" of the development process, denying scientists a complete "movie" of it unfolding.

Now, by combining experimental methods from physics and molecular biology, the team has replaced these snapshots with the movie, allowing them to see the first steps of blueprint formation in the fly embryo literally live and in color. The first of two papers in the July 13 issue of the scientific journal Cell describes the sophisticated techniques required to make these movies, techniques that could help scientists investigate a wide variety of biological systems.

In the second paper, the group poses a new question, never before asked by scientists studying embryos: How precisely can cells in the embryo read the blueprint"

So precisely, the paper suggests, that a precious few molecules signaling a change can make a decisive difference.

"I think the prevailing view has been that cells accomplish all their functions using a complicated combination of mechanisms, each one of which is rather sloppy or noisy," said team member William Bialek, the John Archibald Wheeler/Battelle Professor in Physics. "This research, however, indicates that in the initial hours of a fly embryo's development, cells make decisions to become one part of the body or another by a process so precise that they must be close to counting every available signaling molecule they receive from the mother.”

Three hours into a fly embryo's development, it remains a single large cell with an unusual characteristic: Unlike other cells, which have a single nucleus, the embryo has thousands, each of which awaits a signal from the mother to form itself into a specialized cell. This signal arrives in the form of a droplet of protein called Bicoid that enters the embryo at one end and, like food coloring in water, diffuses out molecule by molecule through the nuclei. The concentration decreases with distance and forms the first blueprint that defines which part of the embryo will become the head and which the backside of the fly.

The team's findings indicate that two neighboring nuclei can determine their different places and functions within the embryo accurately if the concentration of Bicoid between them varies by only about 10 percent -- a quantity that on the scale of the tiny embryo amounts to only a few molecules of Bicoid.

"This signaling requires a sensitivity approaching the limits set by basic physical principles," Bialek said. "Perhaps more important than the answers we have found so far, this work has led us to sharpen the kinds of questions we ask about living cells as we try to understand them with the same kind of mathematical precision that we understand the rest of the physical world."

Source: Princeton University

Explore further: Adventurous bacteria

add to favorites email to friend print save as pdf

Related Stories

Does germ plasm accelerate evolution?

Apr 14, 2014

Scientists at The University of Nottingham have published research in the leading academic journal Science that challenges a long held belief about the way certain species of vertebrates evolved.

Some long non-coding RNAs are conventional after all

Apr 04, 2014

Not so long ago researchers thought that RNAs came in two types: coding RNAs that make proteins and non-coding RNAs that have structural roles. Then came the discovery of small RNAs that opened up whole new areas of research. ...

Recommended for you

Adventurous bacteria

29 minutes ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Japan lawmakers demand continued whaling

1 hour ago

Japanese lawmakers on Wednesday demanded the government redesign its "research" whaling programme to circumvent an international court ruling that described the programme as a commercial hunt dressed up as ...

Revealing camouflaged bacteria

2 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 0

More news stories

Adventurous bacteria

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Gate for bacterial toxins found

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...