Researchers unlock mystery of layer encircling the Earth's core

Jan 30, 2006
Earth from space

University of Minnesota associate professor of chemical engineering Renata Wentzcovitch and her team of researchers have confirmed the properties of a mineral (post-perovskite) that may form near the Earth's core in a layer called the D'' region.

The work offers new insight for interpreting properties of this region. The D'' (Dee double prime) layer surrounds Earth's core and is between 0 and 186 miles thick. It is at the interface between two chemically distinct regions, the rocky mantle and the metallic core. The article, "MgSiO3 post-perovskite at D'' conditions," was published on Jan. 17 in Proceedings of the National Academy of Science.

The research "tells us how to better model Earth's internal processes," said Wentzcovitch. "Proper geodynamical modeling of the Earth is necessary to get a better grasp of the dynamics of the surface. You can't fully understand Earth's surface motion without understanding how it moves inside. What's unbelievable is how well we can model Earth on a big scale. At this scale, small details don't matter."

In 2004, Japanese researchers at the Tokyo Institute of Technology found that high temperatures and pressures transform perovskite, the major mineral in Earth's mantle, into a new mineral called post-perovskite. Wentzcovitch's group contributed to this discovery by determining the structure of post-perovskite and by calculating the pressure and temperature conditions for its existence. They matched the conditions in the D'' layer.

In the current work, Wentzcovitch and colleagues demonstrate that the seismic properties of post-perovskite are much like the previously inexplicable properties found in the D'' layer. This is the most convincing evidence that post-perovskite is in the D'' layer and produces its strange seismic properties.

"As the Earth cools, D'' becomes thicker. Its thickness is related to Earth's age and its aging processes. The discovery of post-perovskite in the D'' layer will also help us understand how the Earth has evolved," Wenttzcovitch said.

On the web: www.pnas.org/content/vol103/issue3/#GEOPHYSICS

Source: University of Minnesota

Explore further: Spacewalking astronauts finish extensive, trick cable job

add to favorites email to friend print save as pdf

Related Stories

Building tailor-made DNA nanotubes step by step

57 minutes ago

Researchers at McGill University have developed a new, low-cost method to build DNA nanotubes block by block - a breakthrough that could help pave the way for scaffolds made from DNA strands to be used in ...

Via laser into the past of the oceans

59 minutes ago

Next to global warming, ocean acidification is currently considered as the second major carbon dioxide problem. With the increase of carbon dioxide (CO2) in the atmosphere larger quantities of the gas are getting into the ...

NSA chief seeks compromise on encrypted phone snooping

59 minutes ago

The National Security Agency chief pressed on Monday for a compromise which allows intelligence services to snoop on encrypted devices to combat terrorism, within a "legal framework" to protect user rights.

Recommended for you

Spacewalking astronauts finish extensive, trick cable job

8 hours ago

(AP)—Spacewalking astronauts successfully completed a three-day cable job outside the International Space Station on Sunday, routing several-hundred feet of power and data lines for new crew capsules commissioned ...

Could the Milky Way become a quasar?

Feb 27, 2015

A quasar is what you get when a supermassive black hole is actively feeding on material at the core of a galaxy. The region around the black hole gets really hot and blasts out radiation that we can see billions ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.