Martian Glaciers: Did They Originate From The Atmosphere

Jan 27, 2006
A perspective view obtained by the HRSC on board ESA's Mars Express
A perspective view obtained by the HRSC on board ESA's Mars Express, showing an unusual 'rock glacier' in the eastern Hellas region. Ice-rich material seems to have flowed from a small, 9 km wide crater into a larger 16 km wide crater below. The ice may have precipitated from the atmosphere a few millions years ago. This unusual structure with traces of a glacier is located in Promethei Terra at the eastern rim of the Hellas Basin, at about latitude 38º South and longitude 104º East. This view is looking south-east. Credits: ESA/DLR/FU Berlin (G. Neukum)

The spectacular features visible today on the surface of the Red Planet indicate the past existence of Martian glaciers, but where did the ice come from?

An international team of scientists have produced sophisticated climate simulations suggesting that geologically recent glaciers at low latitudes (that is near the present-day equator) may have formed through atmospheric precipitation of water-ice particles.

Moreover, the results of the simulations show for the first time that the predicted locations for these glaciers match extensively with many of the glacier remnants observed today at these latitudes on Mars.

For several years, the presence, age and shape of these glacier remnants have raised numerous questions in the scientific community about their formation, and about the conditions on the planet when this happened.

To start narrowing down the rising number of hypotheses, a team led by Francois Forget, University of Paris 6 (France) and interdisciplinary scientist for ESA's Mars Express mission, decided to 'turn back the clock' in their Martian global climate computer model, a tool usually applied to simulate the detail of present-day Mars meteorology.

As a starting point, Forget and colleagues had to make some assumptions - that the north polar cap was still the ice reservoir of the planet, and that the rotation axis was tilted by 45º with respect to the planet's orbital plane.

"This makes the axis much more oblique than it is today (about 25º), but such an obliquity has probably been very common throughout Mars's history. Actually, it last occurred only five and a half million years ago," says Forget.

As expected with such a tilt, the greater solar illumination in the north polar summer increased the sublimation of the polar ice and led to a water cycle much more intense than today.

The simulations showed water ice being accumulated at a rate of 30 to 70 millimetres per year in a few localised areas on the flanks of the Elysium Mons, Olympus Mons and the three Tharsis Montes volcanoes.

After a few thousand years, the accumulated ice would form glaciers up to several hundreds of metres thick.

When the team compared the location and shape of the 'simulated' glaciers with the actual glacier-related deposits of Tharsis - one of the three main regions on the planet where signs of glaciers are seen - they found an excellent agreement.

In particular, the maximum deposition is predicted on the western flanks of the Arsia and Pavonis Montes of the Tharsis region, where the largest deposits in this area are actually observed.

In their simulations, the team could even 'read' why and how ice was accumulated on the flanks of these mountains in the Tharsis region millions of years ago.

Back then, constant year-long winds similar to monsoons on Earth would favour the upslope movement of water-rich air around Arsia and Pavonis Montes.

While being cooled down by tens of degrees, water would condense and form ice particles (larger than those we observe today in the Tharsis region's clouds) that settled on the surface.

Other mountains like Olympus Mons show smaller-scale deposits because, according to the simulations, they were exposed to the monsoon-type strong winds and water-rich air only during the northern summer.

"The north polar cap may not have always been the only source of water during the planet's high obliquity periods," adds Forget.

"So we ran simulations assuming that ice was available in the south polar cap. We could still see ice accumulation in the Tharsis region, but this time also on the east of the Hellas Basin, a six-kilometre deep crater."

This would explain the origins of another major area where ice-related landforms are observed today, the eastern Hellas Basin. indeed.

"The Hellas basin is in fact so deep as to induce the generation of a northward wind flow on its eastern side that would carry most of the water vapour sublimating from the south polar cap during summer. When the water-rich air meet colder air mass over eastern Hellas, water condense, precipitate, and form glaciers," said Forget.

However, the team could not predict ice deposition in the Deuterolinus-Protonilus Mensae region, where glaciers could have been formed by other mechanisms. The scientists are considering several other hypotheses on the formation of recent glaciers.

For instance, observations of Olympus Mons by the High Resolution Stereo Camera on board Mars Express suggest that movement of water from the subsurface to the surface due to hydrothermal activity may have led to the development of glaciers on the cold surface.

Copyright 2006 by Space Daily, Distributed United Press International

Explore further: Students see world from station crew's point of view

add to favorites email to friend print save as pdf

Related Stories

Mars deep down

Aug 19, 2014

Scarring the southern highlands of Mars is one of the Solar System's largest impact basins: Hellas, with a diameter of 2300 km and a depth of over 7 km.

Human contribution to glacier mass loss on the increase

Aug 14, 2014

By combining climate and glacier models, scientists headed by Ben Marzeion from the University of Innsbruck have found unambiguous evidence for anthropogenic glacier mass loss in recent decades. In a paper ...

Missing from New Zealand's ski slopes? Snow

Aug 05, 2014

Winter has rolled into its third month in New Zealand, and Nick Jarman says he's going stir crazy as he stares out at the driving rain on the small ski area he manages in the Southern Alps.

Melt ponds shine in NASA laser altimeter flight images

Aug 05, 2014

Even from 65,000 feet above Earth, aquamarine melt ponds in the Arctic stand out against the white sea ice and ice sheets. These ponds form every summer, as snow that built up on the ice melts, creating crystal ...

Recommended for you

A spectacular landscape of star formation

1 hour ago

This image, captured by the Wide Field Imager at ESO's La Silla Observatory in Chile, shows two dramatic star formation regions in the Milky Way. The first, on the left, is dominated by the star cluster NGC ...

Students see world from station crew's point of view

Aug 19, 2014

NASA is helping students examine their home planet from space without ever leaving the ground, giving them a global perspective by going beyond a map attached to a sphere on a pedestal. The Sally Ride Earth ...

Exoplanet measured with remarkable precision

Aug 19, 2014

Barely 30 years ago, the only planets astronomers had found were located right here in our own solar system. The Milky Way is chock-full of stars, millions of them similar to our own sun. Yet the tally ...

New star catalog reveals unexpected 'solar salad'

Aug 19, 2014

(Phys.org) —An Arizona State University alumnus has devised the largest catalog ever produced for stellar compositions. Called the Hypatia Catalog, after one of the first female astronomers who lived in ...

User comments : 0