Self-assembly generates more versatile scaffolds for crystal growth

Sep 01, 2004

Self-organizing synthetic molecules originally used for gene therapy may have applications as templates and scaffolds for the production of inorganic materials. Using electrostatic interactions between oppositely charged molecules as the binding force, scientists are learning how to organize these synthetic molecules into more versatile complexes with large and controllable pore sizes.

“By investigating the fundamental design rules for the control of self-assembled supramolecular structures, we can now organize large functional molecules into nanoscopic arrays,” said Gerard Wong, a professor of materials science and engineering and of physics at the University of Illinois. Wong and his colleagues report their latest experimental results in the September issue of the journal Nature Materials.

“We showed that the self-assembly of charged membranes and oppositely charged polymers into structures can be understood in terms of some simple rules,” said Wong, senior author of the paper. “We then applied those rules and demonstrated that we could organize molecules into regular arrays with pore sizes ten times larger than in previous DNA-membrane complexes.”

Early self-assembled DNA-membrane structures consisted of periodic stacks of alternating layers of negatively charged DNA “rods” and positively charged lipid membranes. The pores between the DNA rods could be used to package individual ions, which can in turn be crystallized. This work was published last year by Wong’s group, and was featured as a “Chemistry Highlight of 2003” by Chemical & Engineering News.

But generalizing this idea to larger pores was difficult. In previous work, Wong and colleagues showed that actin, a protein found in muscle cells, also reacts with lipid membranes to create ordered structures. The actin-membrane assemblies, however, consisted of the membrane sandwiched between layers of actin, with little room to house or organize other molecules.

In the latest work, the researchers substituted a rod-shaped virus for the DNA. While having a diameter close to that of actin, the virus has a charge density comparable to DNA. The resulting virus-membrane complexes have pore sizes about 10 times larger than the DNA-membrane complexes, and can be used to hold and organize large functional molecules.

“Even though these supramolecular systems were originally designed for gene therapy, we’ve shown that they can be used as templates for organizing other molecules,” Wong said. “An example would be the biomineralization of inorganic nanocrystals, in a way analogous to bone formation.”

To produce bone, nature uses organic molecules to organize inorganic components that become mineralized through additional chemical reactions. Scientists want to create synthetic molecules that work as nanostructured scaffolds of biomolecules and perform tasks ranging from non-viral gene therapy to biomolecular templating and nanofabrication.

“Ultimately, we would like to have designer molecules that do exactly what we want,” Wong said. “Right now we are still elucidating the rules for making these scaffolds and their interactions with inorganic components. It will take some time to move from fundamental science to supramolecular engineering.”

Source: University of Illinois at Urbana-Champaign


Explore further: Experiment with speeding ions verifies relativistic time dilation to new level of precision

add to favorites email to friend print save as pdf

Related Stories

Team improves solar-cell efficiency

4 hours ago

New light has been shed on solar power generation using devices made with polymers, thanks to a collaboration between scientists in the University of Chicago's chemistry department, the Institute for Molecular ...

Calif. teachers fund to boost clean energy bets

4 hours ago

The California State Teachers' Retirement System says it plans to increase its investments in clean energy and technology to $3.7 billion, from $1.4 billion, over the next five years.

Alibaba surges in Wall Street debut

4 hours ago

A buying frenzy sent Alibaba shares sharply higher Friday as the Chinese online giant made its historic Wall Street trading debut.

Dwindling wind may tip predator-prey balance

4 hours ago

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Recommended for you

How Paramecium protozoa claw their way to the top

Sep 19, 2014

The ability to swim upwards – towards the sun and food supplies – is vital for many aquatic microorganisms. Exactly how they are able to differentiate between above and below in often murky waters is ...

User comments : 0