A small leak will sink a great ship

Jun 26, 2007
Mutation in a MicroRNA
Mutation in a microRNA converts petals to stamens. The mutants of petunia and snapdragon show marked similarity. The studies revealed that, due to a common gene defect, the 'plan' underlying the control of floral organ identity is impaired -- resulting in 'the wrong organ at the wrong place.' Credit: MPI for Plant Breeding Research

During flowering four different types of floral organs need to be formed: sepals, which protect the inner organs; the frequently ornamental petals; stamens, which produce pollen and the carpels. This process is orchestrated by a large number of genes.

Scientists at the Max Planck Institute for Plant Breeding Research in Köln (Germany) found, in cooperation with colleagues in Nijmegen (Netherlands) that a small molecule, a so-called microRNA, is crucial for the control of floral organs identity.

Flowers of higher plants are built in a similar pattern: their outermost whorl is composed of sepals, which protect the young bud, thereafter comes a whorl of often colorful petals attracting insect pollinators, followed by a whorl of stamens with pollen sacks and the innermost whorl holds carpels, which later give rise to the fruit and seeds. This basic architecture is comparable in higher plants prompting the question after common components of a genetic 'masterplan.'

Scientists in the group of Zsuzsanna Schwarz-Sommer investigated a mutant of snapdragon where stamens form instead of petals (Fig. 1). Interestingly, a strikingly similar mutant occurs in another plant species, in Petunia. 'We already suspected some ten years ago when we first looked at these mutants that in the two species a similar defect might disturb the genetic control resulting in the 'wrong organ at the wrong place' explains Mrs. Schwarz-Sommer. A similar example is well known in the fruit fly where a mutant carries a pair of legs at the head instead of the two antennae.

Indeed, experiments performed by the German and Dutch scientists showed that in the two plant species mutation in the same gene conferred altered identity to the floral organs. This gene turned out to code for a microRNA, a small ribonucleic acid consisting of little more than 20 nucleotides. MicroRNAs can recognize and bind to complementary sequences present in messenger RNAs (mRNA) and prevent thereby translation of the mRNA into a protein: the respective gene falls silent. By this interaction microRNAs can influence whole chains of control events.

Mutations in microRNAs are rare, so this is the first example for the functional similarity of a plant microRNA in two species. Schwarz-Sommer underlines the significance of the work as follows. 'Our novel insights into control mechanisms governing floral organ identity will need to be built into future attempts to model this biological process mathematically.'

The complex control of floral organ identity has been described by the simple ABC model in textbooks. A, B and C are three developmental functions: A alone is responsible for sepals, combined function of A and B results in petals and combined B and C in stamens. The identity of the central carpel is solely controlled by C. The new results are in conflict with an important mechanistic prediction of this model and replace a static spatial control by a temporal dynamic one.

Citation: Maria Cartolano, Rosa Castillo, Nadia Efremova, Markus Kuckenberg, Jan Zethof, Tom Gerats, Zsuzsanna Schwarz-Sommer & Michiel Vandenbussche, A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral reproductive organ identity, Nature Genetics, DOI 10.1038/ng2056

Source: Max-Planck-Gesellschaft

Explore further: Researchers study vital 'on/off switches' that control when bacteria turn deadly

add to favorites email to friend print save as pdf

Related Stories

Scientists advance understanding of how flowers are formed

Aug 12, 2012

(Phys.org) -- Scientists from the Smurfit Institute of Genetics at Trinity College Dublin have made a significant breakthrough in understanding the genetic processes underlying flower development. The research funded by Science ...

Recommended for you

A new quality control pathway in the cell

4 hours ago

Proteins are important building blocks in our cells and each cell contains millions of different protein molecules. They are involved in everything from structural to regulatory aspects in the cell. Proteins are constructed ...

Stem cells use 'first aid kits' to repair damage

7 hours ago

Stem cells hold great promise as a means of repairing cells in conditions such as multiple sclerosis, stroke or injuries of the spinal cord because they have the ability to develop into almost any cell type. ...

User comments : 0