A fly lamin gene is both like and unlike human genes

Jun 13, 2007

Mitch Dushay and colleagues at Uppsala University in Sweden announce the publication of their paper, "Characterization of lamin Mutation Phenotypes in Drosophila and Comparison to Human Laminopathies" in the June 13th issue of the online, open-access journal PLoS ONE.

Lamins are intermediate filament proteins that make up a matrix underlying the nuclear membrane. Mammals have two types of lamins; A-type lamins are expressed in differentiating cells, while B-type lamins are expressed ubiquitously.

Mutations in the gene coding for human lamin A cause a range of diseases collectively called laminopathies, including forms of muscular dystrophy and premature aging diseases. The fruit fly Drosophila melanogaster has 2 lamin genes that are expressed in A- and B-type patterns, and it has been assumed that similarly expressed lamins perform similar functions.

Yet, Dushay and his colleagues, among others, have shown that the fly lamin genes are more closely related to each other than to mammalian lamin genes. While the independent evolution of similar expression patterns must have been driven by similar vital lamin gene functions, Dushay et el. found that mutations in the ubiquitously expressed Drosophila lamin gene cause larvae to move less and show subtle muscle defects, while surviving lamin adults walk poorly and can't fly – like aged wild type flies.

This suggests that lamin mutations might cause neuromuscular defects, premature aging, or both. The resemblance of Drosophila lamin phenotypes to human laminopathies provides an interesting case of gene expression and function diverging through evolution, and promises greater insight into lamin function, and possibly into laminopathic diseases and aging.

Source: Public Library of Science

Explore further: An uphill climb for mountain species?

add to favorites email to friend print save as pdf

Related Stories

Stem cell clues uncovered

Jul 12, 2013

Proper tissue function and regeneration is supported by stem cells, which reside in so-called niches. New work from Carnegie's Yixian Zheng and Haiyang Chen identifies an important component for regulating stem cell niches, ...

Surprise role of nuclear structure protein in development

Nov 24, 2011

Scientists have long held theories about the importance of proteins called B-type lamins in the process of embryonic stem cells replicating and differentiating into different varieties of cells. New research from a team led ...

Do we owe our sense of smell to epigenetics?

Mar 05, 2013

(Phys.org) —Olfactory sensory neurons – nerve cells in the nose – directly sense molecules that convey scent, then send the signals to the brain. Biologists have long wondered how it's possible for ...

Programming cells: The importance of the envelope

Feb 01, 2013

In a project that began with the retinal cells of nocturnal animals and has led to fundamental insights into the organization of genomic DNA, researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich show how the nuclear ...

Recommended for you

An uphill climb for mountain species?

10 hours ago

A recently published paper provides a history of scientific research on mountain ecosystems, looks at the issues threatening wildlife in these systems, and sets an agenda for biodiversity conservation throughout ...

Extinctions during human era worse than thought

12 hours ago

It's hard to comprehend how bad the current rate of species extinction around the world has become without knowing what it was before people came along. The newest estimate is that the pre-human rate was ...

User comments : 0