A fly lamin gene is both like and unlike human genes

Jun 13, 2007

Mitch Dushay and colleagues at Uppsala University in Sweden announce the publication of their paper, "Characterization of lamin Mutation Phenotypes in Drosophila and Comparison to Human Laminopathies" in the June 13th issue of the online, open-access journal PLoS ONE.

Lamins are intermediate filament proteins that make up a matrix underlying the nuclear membrane. Mammals have two types of lamins; A-type lamins are expressed in differentiating cells, while B-type lamins are expressed ubiquitously.

Mutations in the gene coding for human lamin A cause a range of diseases collectively called laminopathies, including forms of muscular dystrophy and premature aging diseases. The fruit fly Drosophila melanogaster has 2 lamin genes that are expressed in A- and B-type patterns, and it has been assumed that similarly expressed lamins perform similar functions.

Yet, Dushay and his colleagues, among others, have shown that the fly lamin genes are more closely related to each other than to mammalian lamin genes. While the independent evolution of similar expression patterns must have been driven by similar vital lamin gene functions, Dushay et el. found that mutations in the ubiquitously expressed Drosophila lamin gene cause larvae to move less and show subtle muscle defects, while surviving lamin adults walk poorly and can't fly – like aged wild type flies.

This suggests that lamin mutations might cause neuromuscular defects, premature aging, or both. The resemblance of Drosophila lamin phenotypes to human laminopathies provides an interesting case of gene expression and function diverging through evolution, and promises greater insight into lamin function, and possibly into laminopathic diseases and aging.

Source: Public Library of Science

Explore further: 221 new species described by the California Academy of Sciences in 2014

add to favorites email to friend print save as pdf

Related Stories

Stem cell clues uncovered

Jul 12, 2013

Proper tissue function and regeneration is supported by stem cells, which reside in so-called niches. New work from Carnegie's Yixian Zheng and Haiyang Chen identifies an important component for regulating stem cell niches, ...

Surprise role of nuclear structure protein in development

Nov 24, 2011

Scientists have long held theories about the importance of proteins called B-type lamins in the process of embryonic stem cells replicating and differentiating into different varieties of cells. New research from a team led ...

Do we owe our sense of smell to epigenetics?

Mar 05, 2013

(Phys.org) —Olfactory sensory neurons – nerve cells in the nose – directly sense molecules that convey scent, then send the signals to the brain. Biologists have long wondered how it's possible for ...

Recommended for you

Ninety-eight new beetle species discovered in Indonesia

1 hour ago

Ninety-eight new species of the beetle genus Trigonopterus have been described from Java, Bali and other Indonesian islands. Museum scientists from Germany and their local counterparts used an innovative approa ...

Bacteria are wishing you a Merry Xmas

1 hour ago

A bacterium has been used to wish people a Merry Xmas. Grown by Dr Munehiro Asally, an Assistant Professor at the University of Warwick, the letters used to spell MERRY XMAS are made of Bacillus subtilis, ...

Pragmatic approach to saving what can be saved

2 hours ago

How can biodiversity be preserved in a world in which traditional ecosystems are increasingly being displaced by "man-made nature"? Biologists at the TU Darmstadt and ETH Zurich have developed a new concept ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.