Crammed with charged DNA, pressure rises inside virus

Jun 05, 2007
Crammed with charged DNA, pressure rises inside virus
Image credit: Ye Xiang and Michael Rossmann, Purdue University.

It could be an artist’s depiction of someone’s stomach before and after a rather decadent meal. But it is a 3-D cryoelectron microscope reconstruction of the cross-section of a virus, before and after cramming itself full of its own DNA.

The virus, phi29, has a tiny motor that pumps its DNA into the capsid—outer shell—during the assembly process. The potential energy of the tightly coiled DNA may help phi29 inject its genetic material into the bacterial cells it infects.

Now a team led by physicists at the University of California, San Diego has used laser tweezers to measure the forces exerted by the motor as it pushes the DNA into the capsid.

“The virus’ motor has to do mechanical work to overcome two factors that create resistance,” said Douglas Smith, an assistant professor of physics at UCSD who headed the team that published the discovery this week in the early on-line edition of Proceedings of the National Academy of Sciences. “First, the DNA must be forced to bend. Second, the electrostatic repulsion of the DNA’s negatively charged backbone must be overcome. We found that the positively charged ions in the solution are critical to overcoming this repulsion. Without the right combination of positively charged ions, the virus could not force all of its DNA into the capsid.”

The researchers discovered that the forces in the capsid are slightly higher than predicted by theoretical calculations. They say this may be because the packed DNA is less ordered than assumed in the calculations.

Source: University of California - San Diego

Explore further: Endangered hammerhead shark found migrating into unprotected waters

add to favorites email to friend print save as pdf

Related Stories

Work on pioneering pan-European neutron facility underway

Oct 21, 2014

A state-of-the-art facility capable of generating neutron beams 30 times brighter than current facilities is about to be constructed in the Swedish town of Lund. The EUR 1.8 billion will help scientists examine ...

New functions for chromatin remodelers

Aug 28, 2014

Large molecular motors consisting of up to a dozen different proteins regulate access to the genome, which is essential for the transcription of genes and for the repair of DNA damage. Susan Gasser and her ...

Relaxation helps pack DNA into a virus

May 26, 2014

Researchers at the University of California, San Diego have found that DNA packs more easily into the tight confines of a virus when given a chance to relax, they report in a pair of papers to be published ...

Recommended for you

Warming world may spell bad news for honey bees

7 hours ago

Researchers have found that the spread of an exotic honey bee parasite -now found worldwide - is linked not only to its superior competitive ability, but also to climate, according to a new study published ...

Students create microbe to weaken superbug

9 hours ago

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.