New family of antibacterial agents uncovered

January 15, 2009

As bacteria resistant to commonly used antibiotics continue to increase in number, scientists keep searching for new sources of drugs. In this week's JBC, one potential new bactericide has been found in the tiny freshwater animal Hydra.

The protein identified by Joachim Grötzinger, Thomas Bosch and colleagues at the University of Kiel, hydramacin-1, is unusual (and also clinically valuable) as it shares virtually no similarity with any other known antibacterial proteins except for two antimicrobials found in another ancient animal, the leech.

Hydramacin proved to be extremely effective though; in a series of laboratory experiments, this protein could kill a wide range of both Gram-positive and Gram-negative bacteria, including clinically-isolated drug-resistant strains like Klebsiella oxytoca (a common cause of nosocomial infections). Hydramacin works by sticking to the bacterial surface, promoting the clumping of nearby bacteria, then disrupting the bacterial membrane.

Grötzinger and his team also determined the 3-D shape of hydramacin-1, which revealed that it most closely resembled a superfamily of proteins found in scorpion venom; within this large group, they propose that hydramacin and the two leech proteins are members of a newly designated family called the macins.

Paper: "Hydramacin-1, Structure and Antibacterial Activity of a Protein from the Basal Metazoan Hydra" by Sascha Jung, Andrew J. Dingley, René Augustin, Friederike Anton-Erxleben, Mareike Stanisak, Christoph Gelhaus, Thomas Gutsmann, Malte U. Hammer, Rainer Podschun, Alexandre M. J. J. Bonvin, Matthias Leippe, Thomas C. G. Bosch, and Joachim Grötzinger. Article link: www.jbc.org/cgi/content/full/284/3/1896

Source: American Society for Biochemistry and Molecular Biology

Explore further: Plant light sensors came from ancient algae

Related Stories

Plant light sensors came from ancient algae

July 28, 2015

The light-sensing molecules that tell plants whether to germinate, when to flower and which direction to grow were inherited millions of years ago from ancient algae, finds a new study from Duke University.

Toxin from salmonid fish has potential to treat cancer

July 24, 2015

Pathogenic bacteria develop killer machines that work very specifically and highly efficiently. Scientists from the University of Freiburg have solved the molecular mechanism of a fish toxin that could be used in the future ...

Unlocking the rice immune system

July 24, 2015

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team of researchers led by scientists with the U.S. Department of Energy ...

Recommended for you

First detection of lithium from an exploding star

July 29, 2015

The chemical element lithium has been found for the first time in material ejected by a nova. Observations of Nova Centauri 2013 made using telescopes at ESO's La Silla Observatory, and near Santiago in Chile, help to explain ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.