Tiny ecosystem may shed light on climate change

December 15, 2008 by Deborah Halber

(PhysOrg.com) -- MIT researchers have created a microbial ecosystem smaller than a stick of gum that sheds new light on the plankton-eat-plankton world at the bottom of the aquatic food chain.

The work, reported in the January print issue of American Naturalist, may lead to better predictions of marine microbes’ global-scale influence on climate.

Through photosynthesis and uptake of carbon compounds, diverse planktonic marine microorganisms — too small to be seen with the naked eye — help regulate carbon flux in the oceans. Carbon flux refers to the rate at which energy and carbon are transferred from lower to higher levels of the marine food web, and it may have implications for commercial fisheries and other ocean-dependent industries.

The MIT study is one of the first detailed explorations of how sea creatures so small — 500,000 can fit on the head of a pin — find food in an ocean-size environment.

Besides showing that microbes’ swimming and foraging is much more sophisticated and complex than previously thought, the work also indicates that organic materials may move through the oceans’ microbial food web at higher-than-expected rates, via a domino effect of resource patch formation and exploitation, said co-author Justin R. Seymour, postdoctoral fellow in the MIT Department of Civil and Environmental Engineering (CEE).

Using the new technology of microfluidics, Seymour and colleagues Roman Stocker, the Doherty Assistant Professor of Ocean Utilization in CEE, and MIT mechanical engineering graduate student Marcos devised a clear plastic device about the size and shape of a microscope slide.

Depending on the organism being studied, nutrients or prey are injected with a syringe-based pump into the device’s microfluidic channel, which is 45 mm long, 3 mm wide and 50 micrometers deep. “While relying on different swimming strategies, all three organisms exhibited behaviors which permitted efficient and rapid exploitation of resource patches,” Stocker said. It took bacteria less than 30 seconds, for example, to congregate within a patch of organic nutrients.

This new laboratory tool creates a microhabitat where tiny sea creatures live, swim, assimilate chemicals and eat each other. It provides the first methodological, sub-millimeter scale examination of a food web that includes single-celled phytoplankton, bacteria and protozoan predators in action.

“Rather than simply floating in the ocean and passively taking up the chemicals required for growth, many microbes exhibit sophisticated behaviors as they forage in an environment where patches of nutrients and resources are few and far between,” Seymour said.

Oceanographic ecological research has typically taken place at much larger scales because of the difficulty of measuring the behavioral responses of small populations of microorganisms in very small volumes of seawater.

“To understand how environmental fluctuations affect the ecology of populations, it is imperative to understand the foraging abilities and behavior of marine microbes at environmentally relevant scales,” the authors wrote.

Provided by MIT

Explore further: Computing the ocean's true colors

Related Stories

Computing the ocean's true colors

September 16, 2016

When she was 17, Stephanie Dutkiewicz set sail from her native South Africa to the Caribbean islands. Throughout a three-month journey, she noticed that the color of the ocean shifted from place to place, but it wasn't until ...

Marine bacteria's mealtime dash is a swimming success

March 10, 2008

Goldfish in an aquarium are able to dash after food flakes at mealtime, reaching them before they sink or are eaten by other fish. Researchers at MIT recently proved that marine bacteria, the smallest creatures in the ocean, ...

Researcher uses tiny marine microbes to model climate change

April 14, 2015

Dip a beaker into any portion of the world's oceans, and you're likely to pull up a swirling mix of planktonic inhabitants. The oceans are teeming with more than 5,000 species of phytoplankton—microscopic plants in a kaleidoscope ...

Recommended for you

Science: Public interest high, literacy stable

October 28, 2016

While public interest in science continues to grow, the level of U.S. scientific literacy remains largely unchanged, according to a survey by the University of Michigan Institute for Social Research.

Shocks in the early universe could be detectable today

October 27, 2016

(Phys.org)—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (3) Dec 15, 2008
Well, I guess we had to do intensive research on plankton eventualy. It's interesting, but I fail to see how it could make a large impact on anything. We already know about the role plankton has to play with the carbon cycle, so this is more about learning about their life routines than anything else.
not rated yet Dec 15, 2008
theophys, the traversing strategies observed to be used by the bacteria are used in computer science for a broad range of applications. They're typically called predator-prey algorithms.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.