Dried mushrooms slow climate warming in Northern forests

November 3, 2008

The fight against climate warming has an unexpected ally in mushrooms growing in dry spruce forests covering Alaska, Canada, Scandinavia and other northern regions, a new UC Irvine study finds.

When soil in these forests is warmed, fungi that feed on dead plant material dry out and produce significantly less climate-warming carbon dioxide than fungi in cooler, wetter soil. This came as a surprise to scientists, who expected warmer soil to emit larger amounts of carbon dioxide because extreme cold is believed to slow down the process by which fungi convert soil carbon into carbon dioxide.

Knowing how forests cycle carbon is crucial to accurately predicting global climate warming, which in turn guides public policy to curb greenhouse gas emissions. This is especially important in northern forests, which contain an estimated 30 percent of the Earth's soil carbon, equivalent to the amount of atmospheric carbon.

"We don't get a vicious cycle of warming in dry, boreal forests. Instead, we get the reverse, where warming actually prevents further warming from occurring," said Steven Allison, ecology and evolutionary biology assistant professor and lead author of the study. "The Earth's natural processes could give us some time to implement responsible policies to counteract warming globally."

This study appears online Nov. 3 in the journal Global Change Biology.

Soils in the far north contain a lot of carbon from dead grasses, trees and shrubs. Like humans, fungi and bacteria in soil use plant carbon as a food source and convert it into carbon dioxide.

Allison and his colleague, Kathleen Treseder, sought to find out what happens to carbon dioxide levels when boreal forest soil not containing permafrost is warmed. About one-third of the world's boreal forests do not contain permafrost, which is mostly located in Alaska, Canada, Western Siberia and Northern Europe.

Global warming is expected to hit northern latitudes hardest, raising temperatures between 5 and 7 degrees Celsius by the year 2100.

The scientists conducted their experiment in a spruce forest near Fairbanks, Alaska. They built small greenhouses and identified similar unheated plots nearby to serve as controls. Both plots received equal amounts of water.

In mid-May when growing season began, air and soil temperatures were the same in greenhouses and control plots. When greenhouses were closed, air temperature rose about 5 degrees Celsius, and soil temperature rose about 1 degree.

The scientists took measurements in the greenhouses and unheated plots and found that by growing season's end in mid-August, soil in warmed greenhouses produced about half as much carbon dioxide as soil in cooler control plots.

A soil analysis found that about half as much active fungi were present in experimental greenhouse samples compared with samples from the controls. When fungi dry out, they either die or become inactive and stop producing carbon dioxide, the scientists said.

"It's fortuitous for humans that the fungi are negatively affected by this warming," said Treseder, ecology and evolutionary biology associate professor. "It's not so great for the fungi, but might help offset a little bit of the carbon dioxide we are putting directly into the atmosphere by burning fossil fuels."

Source: University of California - Irvine

Explore further: Soil will absorb less atmospheric carbon than expected this century

Related Stories

Calculating the role of lakes in global warming

September 7, 2016

As global temperatures rise, how will lake ecosystems respond? As they warm, will lakes—which make up only 3 percent of the landscape, but bury more carbon than the world's oceans combined—release more of the greenhouse ...

Hidden green skills

September 16, 2016

What have plant scientists learned in the laboratory in the past three to five years that could be used to reduce inputs of water, chemical fertilizers and herbicides to agricultural fields?

Recommended for you

Elon Musk unveils plan for Mars 'city' (Update 2)

September 27, 2016

SpaceX chief Elon Musk unveiled on Tuesday ambitious plans to establish a "city" on Mars by sending humans on massive spacecraft with cabins, at a cost as low as $100,000 per person.

Unusual martian region leaves clues to planet's past

September 27, 2016

Researcher Don Hood from LSU and colleagues at collaborating universities studied an unusual region on Mars—an area with high elevation called Thaumasia Planum. They analyzed the geography and mineralogy of this area they ...

Quantum computing advances with control of entanglement

September 27, 2016

When the quantum computer was imagined 30 years ago, it was revered for its potential to quickly and accurately complete practical tasks often considered impossible for mere humans and for conventional computers. But, there ...

Scientists uncover secret to gold's catalytic powers

September 27, 2016

Settling a decades-long debate, new research conclusively shows that a hierarchy of active species exists in gold on iron oxide catalysis designed for low temperature carbon monoxide oxidation; Nanoparticles, sub-nanometer ...

Microsoft teams with Bank of America on 'blockchain'

September 27, 2016

Microsoft and Bank of America Merrill Lynch on Tuesday announced they are working together to make financial transactions more efficient with blockchain technology—the foundation of bitcoin digital currency.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

barakn
1 / 5 (2) Nov 29, 2008
"Both plots received equal amounts of water." 'Nuff said.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.