Potential treatments from cryptic genes

Jun 02, 2008

Big pharma gave up on soil bacteria as a source of antibiotics too soon, according to research published in the June issue of Microbiology. Scientists have been mining microbial genomes for new natural products that may have applications in the treatment of MRSA and cancer and have made some exciting discoveries.

"Over the last eight years we have been looking for new natural products in the DNA sequence of the antibiotic-producing bacterium Streptomyces coelicolor," said Professor Gregory Challis from the University of Warwick. "In the last 15 years it became accepted that no new natural products remained to be discovered from these bacteria. Our work shows this widely-held view to be incorrect."

In 1928 Alexander Fleming discovered penicillin, which was subsequently developed into a medicine by Florey and Chain in the 1940s. The antibiotic was hailed as a 'miracle cure' and a golden age of drug discovery followed. However, frequent rediscovery of known natural products and technical challenges forced pharmaceutical companies to retreat and stop looking for new molecules.

Currently the complete genetic sequences of more than 580 microbes are known. It is possible to identify pathways that produce new compounds by looking at the DNA sequences and many gene clusters likely to encode natural products have been analysed. 'Genome mining' has become a dynamic and rapidly advancing field.

Professor Challis and his colleagues have discovered the products of two cryptic gene clusters. One of the clusters was found to produce several compounds that inhibit the proliferation of certain bacteria. Three of these compounds were new ones, named isogermicidin A, B and C. "This discovery was quite unexpected," said Professor Challis. "Our research provides important new methodology for the discovery of new natural products with applications in medicine, such as combating MRSA infections."

The other product they discovered is called coelichelin. Iron is essential for the growth of nearly all micro-organisms. Although it is the fourth most abundant element in the Earth's crust it often exists in a ferric form, which microbes are unable to use. "The gene cluster that directs production of coelicehlin was not known to be involved in the production of any known products," said Professor Challis. "Our research suggests that coelichelin helps S. coelicolor take up iron."

Many researchers have followed Professor Challis and his colleagues into the exciting field of genome mining. "In the near future, compounds with useful biological activities will be patented and progressed into clinical or agricultural trials, depending on their applications" said Professor Challis.

Source: Society for General Microbiology

Explore further: Fishing ban rescues Robben Island penguin chicks

Related Stories

Can computers be creative?

Jul 01, 2015

The EU-funded 'What-if Machine' (WHIM) project not only generates fictional storylines but also judges their potential usefulness and appeal. It represents a major advance in the field of computational creativity.

New study re-writes the rules of carbon analysis

Jun 30, 2015

A new study published today in Nature Climate Change has found analyses of carbon emissions may be misleading as they failed to include the impacts of policies such as trading schemes, emission caps or quo ...

Recommended for you

Fishing ban rescues Robben Island penguin chicks

3 hours ago

Survival of endangered African penguin chicks increased by 18% following a trial three-year fishery closure around Robben Island in South Africa, a new study from the University of Exeter has found.

Unlocking lignin for sustainable biofuel

4 hours ago

Turning trees, grass, and other biomass into fuel for automobiles and airplanes is a costly and complex process. Biofuel researchers are working to change that, envisioning a future where cellulosic ethanol, ...

Scientists develop free, online genetic research tool

5 hours ago

Technology rapidly is advancing the study of genetics and the search for causes of major diseases. Analysis of genomic sequences that once took days or months now can be performed in a matter of hours. Yet, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.