Researchers unveil landscape of human-pathogen protein interactions

February 18, 2008

Researchers at the Virginia Bioinformatics Institute and the Department of Computer Science at Virginia Tech have provided the first global analysis of human proteins interacting with viral proteins and proteins in other pathogens.

The scientists examined publicly available experimental data for 190 different pathogens that comprise 10,477 interactions between human and pathogen proteins. This approach provides a highly detailed network map of human proteins interfacing with proteins in different pathogens. The network of interactions was published recently in the journal PLoS Pathogens and reveals possible key intervention points for the future development of therapeutics against infectious diseases.

Matt Dyer, of Martinez, Calif., a bioinformatician at the institute and a graduate student in Virginia Tech’s genetics, bioinformatics, and computational biology program, remarked: “Infectious diseases result in millions of deaths each year. Although much effort has been directed towards the study of how infection by a pathogen causes disease in humans, only recently have large data sets for protein interactions become publicly available. We have leveraged this opportunity to compare protein interactions between human and pathogen proteins from 190 different pathogens to provide important insights into the strategies used by pathogens to infect human cells.”

The researchers paid particular attention to two networks of human proteins – proteins that interact with at least two viral pathogens and proteins that interact with at least two bacterial pathogens. Gene ontology terms computed for both sets of proteins provided key information on the functions of the different proteins. Some of the striking findings of the study included a clear demonstration that pathogens preferentially interact with two classes of human proteins referred to as hubs and bottlenecks. Hubs are popular proteins that interact with many other proteins in the human protein interaction network. Bottlenecks are proteins that lie on many of the shortest paths in the network.

Pathogens appear to maximize their likelihood of success by targeting these high-impact, influential proteins during infection. In many cases, human proteins that mediate pathogen effects are proteins that are known to be involved in cancer pathways, for example, the transcription factor STAT1 or the tumor suppressor protein TP53. This finding suggests interesting parallels between pathogen infection and cancer and opens up future areas for research.

T. M. Murali, an assistant professor in the Department of Computer Science at Virginia Tech, added: “Previous studies have suggested that protein interaction networks have topologies that are resilient to attacks on random nodes but are susceptible to targeted attacks, for example on hubs. Our results provide a striking example of how pathogens may have evolved the ability to exploit the structure of interactions between human proteins in order to promote infection. This global study also suggests that many viruses share similar strategies to control the human cell cycle, regulate programmed cell death, and transport viral genetic material across the nuclear membrane in the human cell.”

Bruno Sobral, executive and scientific director of the Virginia Bioinformatics Institute, commented: “Infectious diseases are placing a huge burden on public health systems around the globe. At the same time, the pharmaceutical and biotechnology industries are facing the daunting challenge of increasing innovation and productivity in their drug and vaccine discovery and development pipelines. This groundbreaking study provides an exciting strategic tool for anyone in the scientific community interested in prioritizing anti-viral and anti-bacterial targets.”

Source: Virginia Polytechnic Institute and State University

Explore further: New protein cleanup factors found to control bacterial growth

Related Stories

New protein cleanup factors found to control bacterial growth

October 8, 2015

Biochemists have long known that crucial cell processes depend on a highly regulated cleanup system known as proteolysis, where specialized proteins called proteases degrade damaged or no-longer-needed proteins. These proteases ...

Researchers discover mechanism for fixing defective mucins

October 2, 2015

Proper lubrication is crucial to keep not only machines but also humans functioning smoothly. The mucus membranes in our mouths, eyes, stomachs and genital area help keep friction to a minimum and also protect us against ...

Enzyme helps detect foreign DNA

September 11, 2015

The human immune system responds to DNA from pathogens by triggering the production of a defense molecule known as interferon. A research team led by A*STAR scientists has now pinpointed an enzyme integral to this process, ...

A new single-molecule tool to observe enzymes at work

September 28, 2015

A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins. ...

Recommended for you

What are white holes?

October 9, 2015

Black holes are created when stars die catastrophically in a supernova. So what in the universe is a white hole?

Could 'The Day After Tomorrow' happen?

October 9, 2015

A researcher from the University of Southampton has produced a scientific study of the climate scenario featured in the disaster movie 'The Day After Tomorrow'.

Horn of Africa drying ever faster as climate warms

October 9, 2015

The Horn of Africa has become increasingly arid in sync with the global and regional warming of the last century and at a rate unprecedented in the last 2,000 years, according to new research led by a University of Arizona ...

A mission to a metal world—The Psyche mission

October 9, 2015

In their drive to set exploration goals for the future, NASA's Discovery Program put out the call for proposals for their thirteenth Discovery mission in February 2014. After reviewing the 27 initial proposals, a panel of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.