New technique promises to aid doctor's ability to identify, treat bacterial infections

February 19, 2008

A new technique developed by a University of Central Florida chemist will help physicians more quickly identify the bacterial infections patients have so they can be treated in hours instead of days.

As more bacterial strains resistant to many drugs emerge, it becomes more critical to quickly identify infections and the antibiotics that would most effectively treat them. Such quick identifications become even more important during epidemics because large numbers of samples would have to be tested at once.

Assistant Professor J. Manuel Perez’s new technique also promises to give research institutes and pharmaceutical companies a quicker and cheaper way of developing new antibiotics to combat super bugs.

The results of Perez’s study were recently published online in Analytical Chemistry (pubs.acs.org/cgi-bin/asap.cgi/ancham/asap/pdf/ac701969u.pdf>). The research was funded in part by the National Institutes of Health.

“The method really gives doctors quicker access to test results so they can treat their patients more quickly,” Perez said from his lab at the Nanoscience Technology Center at UCF. “But there are more applications. This method can also be used by research facilities and big pharmaceutical companies for the high throughput screening of drugs for antibacterial activity.”

Perez uses gold nanoparticles coated with a sugar and a protein that binds to sugars. Meanwhile, a variety of antibiotics are placed in the same solution. A spectrophotometer reads optical variations in the gold nanoparticle solution as the sugar and protein shift , which in turn demonstrate which antibiotics effectively halt bacteria growth and which ones do not. Results can be obtained within a couple of hours, in contrast to the traditional methods, which can take days to complete. And hundreds of samples can be tested at once using this technique because the amount of bacteria and antibiotic needed is small.

Pharmaceutical companies can use existing equipment to read the variations, which means they do not have to buy new equipment. Perez’s study also shows that the technique is as sensitive and accurate as the traditional, more time-consuming approach.

“We’re very excited and very pleased with the results,” Perez said.

Source: University of Central Florida

Explore further: Scientists take steps to make weak TB drugs strong again

Related Stories

Scientists take steps to make weak TB drugs strong again

January 18, 2016

Biophysicists have discovered why the bacteria that cause tuberculosis (TB) are naturally somewhat resistant to antibiotics known as fluoroquinolones. Their findings, based on mapping the detailed three-dimensional structure ...

Students search the soil for new antibiotics

November 20, 2015

We're running out of effective antibiotics, and people are starting to die as a result. The problem is so acute that the World Health Organization has declared this week, Nov. 16-22, Antibiotics Awareness Week – but antibiotic ...

Non-invasive sinusitis diagnostics in sight

December 1, 2015

Sinusitis is a very common disease. Most frequently, it can be successfully treated with decongestants and antiinflammatory drugs. Only prolonged infections related to bacteria should be treated with antibiotics. Unfortunately, ...

Cooperating bacteria isolate cheaters

December 8, 2015

Bacteria, which reciprocally exchange amino acids, stabilize their partnership on two-dimensional surfaces and limit the access of non-cooperating bacteria to the exchanged nutrients.

Recommended for you

Superconductors could detect superlight dark matter

February 9, 2016

(Phys.org)—Many experiments are currently searching for dark matter—the invisible substance that scientists know exists only from its gravitational effect on stars, galaxies, and other objects made of ordinary matter. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.