Researchers discover a pathway to turn off immune system cells

Jan 31, 2008

University of Minnesota researchers have discovered a new way to turn genes off in human T cells, a type of white blood cell that helps the immune system fight infections.

Turning off genes, through a process known as mRNA decay, is important for regulating the body’s immune response after fighting infection. This research could lead to development of new drugs that turn off the immune system in patients with autoimmune diseases – such as rheumatoid arthritis and lupus. It could also prevent cancer cells from dividing.

Researchers used a novel approach that combines molecular biology and computational analysis to identify mRNA sequence responsible for turning off T cells. The research is published in the February 1 issue of Molecular Cell.

“Although this study analyzed T cells, this pathway is present in all human cells,” said Paul Bohjanen, M.D., Ph.D., co-director of the Center for Infectious Diseases and Microbiology Translational Research (CIDMTR) and principal investigator of the study. “Knowledge from this study can be applied to help researchers better understand other types of cells and how they function.”

During an infection, T cells turn on and divide to help clear the infection from the body. After the infection is cleared, the cells need to turn off so the body can return to a stable condition. If the cells do not turn off, however, they can cause damage to the body and can potentially develop into cancer cells.

This research is important because to date, understanding the mechanisms that turn off cells has not been very well understood.

Researchers measured the rate of mRNA decay for each of the approximately 6,000 genes in human T cells. That information was then analyzed by George Karypis, Ph.D., associate professor of computer science, and his colleagues at the Minnesota Supercomputing Institute, using complex computer programs to identify a sequence present in mRNA that was destroyed rapidly in the cell. Bohjanen and his colleagues performed molecular biology experiments to confirm that this sequence targets mRNA for destruction and was responsible for turning off genes in activated T cells.

“This discovery would not have been possible without the interdisciplinary collaboration between molecular biologists and computer scientists,” Bohjanen said. The collaboration between Bohjanen and Karypis was facilitated by Irina Vlasova, M.D., Ph.D., research associate in Bohjanen’s molecular biology laboratory, who received training in computational biology through a Minnesota Supercomputing Institute fellowship.

Source: University of Minnesota

Explore further: Study on pesticides in lab rat feed causes a stir

Related Stories

Decaying RNA molecules tell a story

Jun 04, 2015

Once messenger RNA (mRNA) has done its job - conveying the information to produce the proteins necessary for a cell to function - it is no longer required and is degraded. Scientists have long thought that ...

Cells amplify messenger RNA levels to set protein levels

May 07, 2015

Messenger RNA (mRNA) levels dictate most differences protein levels in fast-growing cells when analyzed using statistical methods that account for noise in the data, according to a new study by researchers from the University ...

Highly efficient CRISPR knock-in in mouse

May 01, 2015

Genome editing using CRISPR/Cas system has enabled direct modification of the mouse genome in fertilized mouse eggs, leading to rapid, convenient, and efficient one-step production of knockout mice without ...

New target for anticancer drugs—RNA

Apr 06, 2015

Most of today's anticancer drugs target the DNA or proteins in tumor cells, but a new discovery by University of California, Berkeley, scientists unveils a whole new set of potential targets: the RNA intermediaries ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

1 hour ago

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

Why the seahorse's tail is square

1 hour ago

Why is the seahorse's tail square? An international team of researchers has found the answer and it could lead to building better robots and medical devices. In a nutshell, a tail made of square, overlapping ...

New technique maps elusive chemical markers on proteins

3 hours ago

Unveiling how the 20,000 or so proteins in the human body work—and malfunction—is the key to understanding much of health and disease. Now, Salk researchers developed a new technique that allows scientists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.