Scientists Discover How Cells Build a 'Machine' for Cell Division

December 19, 2007
Scientists Discover How Cells Build a 'Machine' for Cell Division

Using time-lapse photography and computer modeling, a team of researchers from Columbia, Yale and Lehigh Universities has explained a mystery surrounding the assembly of a cellular structure responsible for cell division, the vital process which enables living creatures to develop from embryo to adult.

Termed the ‘contractile ring,’ the structure is a tiny muscle-like ring used by cells to literally pinch themselves into two genetically identical daughter cells at the end of mitosis, the stage where the nucleus divides into two. Scientists believe the contractile ring acts like an old-fashioned purse string that eventually draws together before severing one cell into two.

Understanding contractile ring assembly may also have important implications on human health. Recent studies suggest that failure of the cell-separating machinery may be associated with tumor development in cancer.

“Scientists have known for decades that the ring, like a muscle, consists of proteins capable of exerting force,” said Thomas Pollard, chair of the Department of Molecular, Cellular and Developmental Biology at Yale, “but we did not have a plausible mechanism to explain how a cell puts together this short-lived, force-producing structure, which is always located precisely between the two daughter nuclei. We found that yeast cells assemble their contractile ring using a search, capture, pull and release mechanism.”

Ben O’Shaughnessy, professor of chemical engineering at Columbia University, led a group that developed computer simulations quantitatively analyzing this mechanism.

“Our work shows how a cell executes the challenging task of assembling the working parts of its contractile machinery in just the right way,” said O’Shaughnessy. “The team of biologists and physicists integrated live cell observations, data analysis and computer simulations to reveal a remarkable assembly mechanism. The collaboration demonstrated the crucial role of perspectives and techniques from the physical sciences and engineering in the new biology.”

Using yeast cells, the researchers discovered that cells undergoing mitosis generate protein clusters (nodes) on the inside of the cell membrane around the cell’s equator. These nodes produce filaments growing in random directions. When a filament encounters and pairs with another node, it begins pulling the two nodes together. Connections are broken after about 20 seconds, only to be replaced by new connections between other pairs of nodes.

O’Shaughnessy explains that while seemingly counterproductive, the breaks and reconnections in this ‘search and capture’ strategy seem crucial for the ring assembly process. “The ring assembly consists of many episodes of attraction between node pairs,” O’Shaughnessy said. “These proceed in parallel and eventually position the nodes into a nicely condensed contractile ring around the equator, ready to pinch the mother into two daughters at a later stage.”

The assembly process found in yeast may hold important clues for human cells. “Future work will involve testing the concepts learned from yeast in other cell types to learn if the mechanism is universal,” said Pollard. “Since other cells, including human cells, depend on similar proteins for cytokinesis (cell division into two daughter cells), it is entirely possible that they use the same strategy.”

The research was conducted by cell biologists at Yale and physicists at Columbia and Lehigh. Dimitris Vavylonis, assistant professor of physics at Lehigh, (formerly at Columbia and Yale), said, “A key aspect of this research project was the use of computer modeling simulations at every step of the process to test what was feasible physically and to help guide the experiments.”

Jian-Qiu Wu was part of the cell biology effort at Yale and is now assistant professor of molecular genetics and cellular biochemistry at Ohio State. “The essence of the approach was that experiment and modeling proceeded hand-in-hand,” Wu said. “Our simulations neatly paralleled actual research outcomes.”

Watch a series of videos published in the current issue of Science that illustrate the discoveries about cell division --
Source: by David Poratta, Columbia University

Explore further: Nissan's 2016 Leaf SV, SL do 107 miles per battery charge

Related Stories

Nissan's 2016 Leaf SV, SL do 107 miles per battery charge

September 11, 2015

What's that? You will get 107 miles on a single charge? No doubt the claim is designed to ring in your ears, as the Nissan Leaf makes its introductions to the public about how it has a new 2016 Leaf which is capable of achieving ...

Chemists create switchable gold catalyst

September 23, 2015

A gold catalyst whose behaviour can be controlled by the addition of acid or metal ion cofactors has been designed by chemists from the University of Southampton.

Researchers reveal new electron ring formations

August 12, 2015

Laser wakefield acceleration, a process where electron acceleration is driven by high-powered lasers, is well-known for being able to produce high-energy beams of electrons in tabletop-scale distances. However, in recent ...

Chemists solve major piece of cellular mystery

August 27, 2015

Not just anything is allowed to enter the nucleus, the heart of eukaryotic cells where, among other things, genetic information is stored. A double membrane, called the nuclear envelope, serves as a wall, protecting the contents ...

Recommended for you

Horn of Africa drying ever faster as climate warms

October 9, 2015

The Horn of Africa has become increasingly arid in sync with the global and regional warming of the last century and at a rate unprecedented in the last 2,000 years, according to new research led by a University of Arizona ...

Scientists paint quantum electronics with beams of light

October 9, 2015

A team of scientists from the University of Chicago and the Pennsylvania State University have accidentally discovered a new way of using light to draw and erase quantum-mechanical circuits in a unique class of materials ...

A better way to read the genome

October 9, 2015

UConn researchers have sequenced the RNA of the most complicated gene known in nature, using a hand-held sequencer no bigger than a cell phone.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.