Bacteria shed light on an important group of human proteins

November 19, 2007

A collaboration between researchers in Switzerland, the UK and France has led to the solution of the first crystal structure of a member of the Rhesus protein family and thereby shed new light on a group of proteins of great importance in human transfusion medicine. The UK group was led by Professor Mike Merrick in the Department of Molecular Microbiology at the John Innes Centre.

Ammonium is a fundamental source of nitrogen for almost all living cells but in excess it can also potentially be toxic. Bacteria, fungi and plants take up ammonium using proteins, called Ammonium Transport (Amt) proteins, which span the membranes of cells. Animals use a related family of proteins, known as the Rhesus (Rh) proteins, to move ammonium across cell membranes. In humans the Rh proteins are also responsible for the Rhesus negative blood type found in 15% of the human population.

Work on the mode of action of the Amt proteins has been pioneered by studies in the laboratory of Professor Mike Merrick in the Department of Molecular Microbiology at JIC. In collaboration with researchers at the Paul Sherrer Institute in Switzerland and France’s Université Paris Descartes and Institut Jacques Monod, Prof. Merrick’s group have now taken advantage of the fact that a Rhesus protein has been found to be made by a bacterium, Nitrosomonas europaea.

Publishing in the journal Proceedings of the National Academy of Sciences of the U.S.A. Online Early Edition they have determined at very high resolution (1.3 Å), the first X-ray crystal structure of a Rhesus protein. This offers important insights into how these proteins facilitate the movement of ammonium across cell membranes. It also gives new information about the likely structure of these clinically important proteins in humans. For instance, this research strongly suggests that the equivalent human proteins are likely to be trimers and not tetramers as previously proposed.

Citation: The 1.3-Å resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins Domenico Lupo, Xiao-Dan Li, Anne Durand, Takashi Tomizaki, Baya Cherif-Zahar, Giorgio Matassi, Mike Merrick, and Fritz K. Winkler www.pnas.org/cgi/doi/10.1073/pnas.0706563104

Source: Norwich BioScience Institutes

Explore further: Using artificial lipid vesicles, biochemists show how membrane proteins transport ammonium

Related Stories

Breakthrough: Sensors monitor cells at work

July 2, 2013

Transport proteins are responsible for moving materials such as nutrients and metabolic products through a cell's outer membrane, which seals and protects all living cells, to the cell's interior. These transported molecules ...

New research resolve Rh protein's biological role

May 26, 2005

Labels marking bags of donated blood throughout the world contain information about the presence of a Rhesus (Rh) antigen, a protein found on the membranes of human red blood cells. Yet, despite the Rh protein's importance ...

Recommended for you

Can genes make us liberal or conservative?

August 4, 2015

Aristotle may have been more on the money than he realised in saying man is a political animal, according to research published Wednesday linking genes with liberal or conservative leanings.

Galaxies show appetite for growth

August 4, 2015

The extent to which galaxies consume one another has been revealed in research. Findings from the study help to explain how galaxies such as the Milky Way were formed.

Robo-whiskers mimic animals exploring their surroundings

August 4, 2015

Many mammals, including seals and rats, rely on their whiskers to sense their way through dark environments. Inspired by these animals, scientists working at the University of Illinois at Urbana-Champaign and Illinois' Advanced ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.