Scientists uncover how hormones achieve their effects

Oct 22, 2007

New insights into the cellular signal chain through which pheromones stimulate mating in yeast have been gained by scientists at the European Molecular Biology Laboratory (EMBL).

Similar signal chains are found in humans, where they are involved in many important processes such as the differentiation of nerve cells and the development of cancer. A sophisticated microscopy technique allowed the researchers to observe for the first time the interplay of signalling molecules in living yeast cells, and to work out how they pass on a signal through the cell. The results are published in the current issue of Nature Cell Biology.

Upon release of a pheromone – a chemical signal stimulating mating behaviour - by a nearby cell, yeast cells form a projection that serves as a mating organ and brings about the fusion of two cells. The pheromone binds to a receptor on the cell’s exterior – in the same way as many growth hormones in humans do – which then sets off a signalling chain inside the cell. This chain consists of a series of proteins called MAP kinases, which pass on the signal by interacting with each other and activating the next downstream member of the chain by adding on phosphate residues. At the end of the chain are those molecules that bring about the changes that underpin the formation of the mating organ and the fusion of the cells.

Scientists in the groups of Michael Knop and Philippe Bastiaens at EMBL labelled members of the MAP kinase signalling chain with fluorescent molecules and observed their diffusion and interaction in living yeast cells stimulated with pheromones using a novel microscopic approach that does not disturb the natural state of the cell.

“Our method is so precise that we could virtually count the molecules and the interactions between chain components,” says Knop. “To our surprise, the observed proteins in the cell’s interior did not interact more after stimulation by the pheromone. This means changes in interaction are not the way by which the signal is transmitted through the interior of the cell.”

Knop and his team revealed that the actual signal is not produced uniformly throughout the cell but only by the few chain components found in the mating projection. They activate a protein called Fus3, which diffuses into the centre of the cell to spread the signal. While travelling, however, Fus3 is constantly inactivated by proteins found in the interior of the cell.

“We found that the concentration of Fus3 activity is very high at the tip of the developing mating organ and then gradually gets less towards the centre of the cell,” says Celine Maeder, who carried out the research in Knop’s lab. “This sets up a gradient of Fus3 activity, which might allow the signal to have different effects in different parts of the cell.”

“This result is exciting,” concludes former EMBL group leader Philippe Bastiaens, who now is a director at the Max Planck Institute of Molecular Physiology. “It revolutionizes our understanding of signalling processes and the way we need to study them.” The MAP kinase signalling chain is conserved across species, and the insights gained in yeast contribute to a better understanding of a pathway also relevant to human biology and disease.

Source: European Molecular Biology Laboratory

Explore further: Study finds shade, cover can reduce predation by birds on trout

Related Stories

Exposing breast cancer using nanoscale polymers

May 13, 2015

Photoacoustic imaging is a ground-breaking technique for spotting tumors inside living cells with the help of light-absorbing compounds known as contrast agents. A*STAR researchers have now discovered a way ...

Controlling the internal structure of mitochondria

May 05, 2015

(Phys.org)—One might think of mitochondria as devices for transporting electrons to their lowest energy state. Little bags of finely-tuned respiratory chain subunits which combine electrons extracted from ...

How to kill a protein

Apr 24, 2015

For decades scientists have been looking closely at how our cells make proteins. But the inverse is equally important: how cells kill them.

Oldest fossils controversy resolved

Apr 20, 2015

New analysis of world-famous 3.46 billion-year-old rocks by researchers from The University of Western Australia is set to finally resolve a long-running evolutionary controversy.

Recommended for you

Ecuador seizes 200,000 shark fins

1 hour ago

Ecuador seized around 200,000 shark fins and arrested three suspected traffickers at the country's main fishing port, the government said Wednesday.

English foxes safe for now as Cameron backs down

10 hours ago

English foxes won a temporary respite after Prime Minister David Cameron's promise to repeal a ban on hunting them failed to make it into his programme outlined in the Queen's Speech on Wednesday.

Sex chromosomes—why the Y genes matter

11 hours ago

Several genes have been lost from the Y chromosome in humans and other mammals, according to research published in the open access journal Genome Biology. The study shows that essential Y genes are rescue ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.