Picky-eater Flies Losing Smell Genes

Apr 02, 2007

A UC Davis researcher is hot on the scent of some lost fruit fly genes. According to population biology graduate student Carolyn McBride, the specialist fruit fly Drosophila sechellia is losing genes for smell and taste receptors 10 times faster than its generalist relative Drosophila simulans. The findings could help researchers understand how some insect pests adapt to feeding on a particular plant.

Genes are lost when mutations destroy their function. "Drosophila sechellia may be losing genes that helped its ancestors detect and assess plants it no longer uses," said McBride, whose research was recently published in the journal Proceedings of the National Academy of Sciences.

A native of the Seychelles islands in the Indian Ocean, D. sechellia split from its sister species D. simulans half a million years ago -- just a blink of evolutionary time. While D. simulans feeds on a variety of plants, D. sechellia specializes in eating the Indian mulberry, which repels other fruit flies. D. sechellia has evolved resistance to the toxins of its host fruit, and a strong chemical attraction to its scent.

For her genetic analysis, McBride drew on the recently sequenced genomes of D. sechellia and D. simulans, which are available to the public.

"This is the first time that biologists have been able to compare whole genome sequences from closely related insects that differ dramatically in their ecology," she said. McBride also compared the genes of these two flies to another close relative, the classic lab fruit fly Drosophila melanogaster.

She discovered that not only is the specialist fly losing genes for smell and taste receptors 10 times faster than the generalist, but its remaining sensory genes are also evolving at a more rapid rate. McBride said that the changes in these genes are likely related to the flies' different feeding strategies, because smell and taste are the primary senses that insects use to assess potential host plants.

"My work suggests that changes in these receptors help insects adapt to novel host plants," McBride said. "These genes may therefore be a good place to start looking for genetic changes that underlie host adaptation in other species, including agricultural pests."

Source: UC Davis

Explore further: Producing jet fuel compounds from fungus

Related Stories

Baidu revenue climbs while profit slips

8 hours ago

Baidu on Wednesday reported that its quarterly profit slipped despite revenue jumping more than a third on strong use of smartphones to access the service.

China's Tencent takes stake in games maker Glu

8 hours ago

Chinese Internet giant Tencent agreed to take a minority stake in Glu Mobile, a maker of video games including "Contract Killer" and "Kim Kardashian: Hollywood," the companies said Wednesday.

Tracking tiny songbirds across continents

8 hours ago

A pair of newly published papers in The Condor: Ornithological Applications lay out a method for outfitting birds with geolocators or radio transmitters that cuts precious weight from the package, allowi ...

Things to know about California's plan to cut emissions

8 hours ago

California Gov. Jerry Brown announced a new target Wednesday in the state's efforts to reduce carbon emissions that contribute to climate change. Here are some things to know about what California is doing:

Recommended for you

Building scaffolds in the cell's power stations

3 hours ago

A group of scientists led by Assistant Professor Dr. Martin van der Laan has decoded the molecular basis for the characteristic structures inside of mitochondria. Mitochondria are the powerhouses of cells ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.