Non-venomous Asian snakes 'borrow' defensive poison from toxic toads

Jan 30, 2007
A Juvenile Rhabdophis tigrinus snake from Ishima, a Japanese island, curls in a defense posture. Credit: Old Dominion University, Alan Savitsky

Most snakes are born with poisonous bites they use for defense. But what can non-poisonous snakes do to ward off predators?

What if they could borrow a dose of poison by eating toxic toads, then recycling the toxins?

That's exactly what happens in the relationship between an Asian snake and a species of toad, according to a team of researchers funded by the National Science Foundation (NSF) Division of Integrative Organismal Systems (IOS).

Herpetologists Deborah Hutchinson, Alan Savitzky of Old Dominion University in Norfolk, Va., and colleagues published results of research on the snake's dependence on certain toads in this week's online issue of the journal Proceedings of the National Academy of Sciences.

Hutchinson studied the Asian snake Rhabdophis tigrinus and its relationship to a species of toxic toad it eats. In the PNAS paper, she and co-authors describe dietary sequestration of toxins by the snakes. The process allows the snakes to store toxins from the toads in their neck glands. When under attack, the snakes re-release the poisons from these neck glands.

Many invertebrates sequester dietary toxins for use in defense, including milkweed insects and sea slugs. But vertebrate examples of toxin sequestration, especially from vertebrate prey, are rare. "A snake that's dependent on a diet of toads for chemical defense is highly unusual," said Hutchinson.

Hutchinson said the research had identified six compounds in the snakes that may hold promise in medical treatments for people suffering from hypertension and related blood pressure disorders.

The researchers made their case by testing Rhabdophis tigrinus on several Japanese islands, one with a large population of the toxic toads and another with none, and compared them with snakes from the Japanese island of Honshu, where toads are few. The presence of toxins in the snakes' neck glands depended upon their access to the toads.

Snakes without the borrowed toxins were more likely to turn and flee from danger than to hold their ground and perform a toxin-releasing defensive maneuver.

"Sequestration of toxins in a specialized [neck gland] structure in a vertebrate is a remarkable finding," said William Zamer, IOS deputy director at NSF. "This finding offers new insights into the complex mechanisms underlying ecological relationships and will lead to important insights about fundamental biological questions."

Source: National Science Foundation

Explore further: Producing jet fuel compounds from fungus

Related Stories

Inflatable toad gives small guys the slip

Jan 05, 2010

The female cane toad can pump herself up to mega-size to throw off smaller males striving to mate with her, Australian biologists reported on Wednesday.

Recommended for you

Producing jet fuel compounds from fungus

2 hours ago

Washington State University researchers have found a way to make jet fuel from a common black fungus found in decaying leaves, soil and rotting fruit. The researchers hope the process leads to economically ...

New technology maps human genome in days

4 hours ago

The two 3-by-1-inch glass chips held the unfathomable amount of genetic information contained in 16 human genomes. Last week, a technician placed the chips - called flow cells - in a new genetic sequencing ...

Just like humans, dolphins have social networks

7 hours ago

They may not be on Facebook or Twitter, but dolphins do, in fact, form highly complex and dynamic networks of friends, according to a recent study by scientists at Harbor Branch Oceanographic Institute (HBOI) ...

Norway plans to slash subsidies to fur farms

7 hours ago

Norwegian fur farmers denounced Tuesday a government proposal to slash financial support to the controversial industry and warned that it could lead to farm closures in vulnerable rural areas.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.