Genetic Archaeology Finds Clues to Pregnancy in Male Pipefish, Seahorses

December 5, 2006
Genetic Archaeology Finds Clues to Pregnancy in Male Pipefish, Seahorses
Scientists have discovered a new function for an "old" gene in pipefish. Credit: Siam Ocean World Aquarium, Bangkok

Genetic archaeology is providing a new clue to one of the greatest gender mysteries in the fish world: how did male pregnancy evolve in a family of fish?

A gene discovered in the gulf pipefish hints that a gene already busy with kidney and liver function may have learned new tricks in the male womb, said April Harlin-Cognato, a biologist at Michigan State University, and her colleagues. Their research results, funded by the National Science Foundation (NSF), are published in this week's online edition of the journal Proceedings of the National Academy of Sciences (PNAS).

"We're interested in the evolution of novelty and how novel traits evolve," Harlin-Cognato said. "Why is this the only fish that exhibits male pregnancy? It's one of the more difficult phenomena to explain in evolutionary biology, and we're wondering if it's a matter of old genes learning new tricks."

Gulf pipefish are a member of the same family as seahorses. They look like seahorses without the curved tails. As in seahorses, male pipefish accept eggs from the females, fertilize them and carry them in pouches. These brood pouches have evolved into complex organs able to nurture and protect the eggs.

Harlin-Cognato, who conducted the research along with Eric Hoffman of the University of Central Florida, and Adam Jones of Texas A&M University, found a new type of gene that codes for a protein called astacin, which performs a variety of functions in bony fish.

Through the course of evolution, some genes are copied. The copies can take on different functions while the original continues to perform the initial functions. However, this new gene, which Harlin-Cognato's team dubbed "patristacin" in deference to its suspected fatherly functions, is not a copy. Instead, it is likely a second job for astacin.

The researchers suspect that in its early days, possibly thousands of years ago, a patristacin gene likely assisted in kidney and liver function. They think it's possible the gene was drafted into supporting the then-newfangled male brood pouch. Eventually, patristacin became productive at its second job.

"These researchers have made a strong case that this gene is not a new one, but an old gene that has taken on additional work," said Michael Beecher, a program director in NSF's Division of Integrative Organismal Biology, which funded the research.

"We think it was a case of 'genetic moonlighting,'" Harlin-Cognato said. "Genes show you ancestry. They show you the overall family tree and can tell you when things took place during the evolution of a new structure. We're looking at the endpoint and trying to figure out its origin. It's like doing genetic archaeology."

Source: NSF

Explore further: Genetically modified fly deployed against fruit pest

Related Stories

Surprising signal to control male fertility

November 20, 2015

Signaling molecules of the Wnt family are ubiquitous in biology. From cnidaria to man, they are responsible for forming the basic shape of all organisms. Without Wnt, our body would not have a top or bottom, front or rear. ...

Frogs pit guns against sperm in battle for mates

October 29, 2015

Males competing for female attention is nothing new but research into frogs in swamps near Albany has revealed something unusual—larger, stronger-armed males fare better fathering offspring in isolation while smaller, weaker ...

Butterfly mimicry through the eyes of bird predators

November 5, 2015

In the natural world, mimicry isn't entertainment; it's a deadly serious game spanning a range of senses - sight, smell and hearing. Some of the most striking visual mimics are butterflies. Many butterflies become noxious ...

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

A blue, neptune-size exoplanet around a red dwarf star

November 25, 2015

A team of astronomers have used the LCOGT network to detect light scattered by tiny particles (called Rayleigh scattering), through the atmosphere of a Neptune-size transiting exoplanet. This suggests a blue sky on this world ...

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.