Spread of plant diseases by insects can be described by equations that model interplanetary gravity

September 1, 2006

Researchers from Penn State University and the University of Virginia show that the spread of diseases by insects can be described by equations similar to those that describe the force of gravity between planetary objects. Their findings are detailed in the September issue of The American Naturalist.

Insects tend to transmit diseases in the course of feeding on plants, and their movement between plants is influenced by plant quality (how good of a meal they'll get) and the distance between plants, or, how far they'll have to travel to get to the next meal, explain Matthew Ferrari, Jessica Partain, Janis Antonovics, and Ottar Bjornstad.

"It turns out insects are more likely to move shorter distances between better plants," write the authors. "Interestingly, then, the probability of disease being passed between two plants goes up if they are closer and/or better, which parallels the stronger gravity between closer and larger planets."

The researchers tracked a fungal disease spread by bees and moths in the course of pollinating and feeding on nectar from white campion flowers at the University of Virginia's Mountain Lake Biological Station. As predicted by the behaviour of insects, the disease was more likely to spread shorter distances between plants that had many flowers.

"This implies that knowledge of insect behaviour can lead to better prediction of where disease will spread," explain the authors. In fact, these patterns are not limited to diseases of plants or diseases carried by insects. Bjornstad and colleagues have previously shown that similar patterns describe the spread of measles among cities, because people tend to travel more between large towns or only short distances.

Source: University of Chicago

Explore further: Spread by trade and climate, bugs butcher America's forests

Related Stories

Spread by trade and climate, bugs butcher America's forests

December 7, 2016

In a towering forest of centuries-old eastern hemlocks, it's easy to miss one of the tree's nemeses. No larger than a speck of pepper, the Hemlock woolly adelgid spends its life on the underside of needles sucking sap, eventually ...

How the world can save bees and pollinating insects

November 28, 2016

An international research team has released a top-10 list of ways countries can protect pollinating insects such as bees, which are vital for food production, following worrying declines in pollinating insect populations ...

New warning over spread of ash dieback

October 27, 2016

The ash dieback fungus could spread more quickly and affect more trees than previously expected, according to research at the University of Exeter.

Recommended for you

Egyptian mummies virtually unwrapped in Australia

December 8, 2016

The hidden secrets of Egyptian mummies up to 3,000 years old have been virtually unwrapped and reconstructed for the first time using cutting-edge scanning technology in a joint British-Australian exhibition.

Dark matter may be smoother than expected

December 7, 2016

Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought. An international team ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.